1
|
Bi T, Feng R, Ren W, Hang T, Zhao T, Zhan L. ZiBu PiYin recipe regulates central and peripheral Aβ metabolism and improves diabetes-associated cognitive decline in ZDF rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118808. [PMID: 39299360 DOI: 10.1016/j.jep.2024.118808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive impairment caused by central neuropathy in type 2 diabetes mellitus (T2DM), namely diabetes-associated cognitive decline (DACD), is one of the common complications in patients with T2DM. Studies have shown that brain β-amyloid (Aβ) deposition is a typical pathological change in patients with DACD, and that there is a close relationship between intestinal microorganisms and cognitive impairment. However, the specific mechanism(s) of alteration in Aβ metabolism in DACD, and of the correlation between Aβ metabolism and intestinal microorganisms remain unknown. AIM OF THE STUDY Revealing the mechanism of ZBPYR regulating Aβ metabolism and providing theoretical basis for clinical evaluation and diagnosis of DACD. MATERIALS AND METHODS We characterized Aβ metabolism in the central and peripheral tissues of Zucker diabetic fatty (ZDF) rats with DACD, and then explored the preventive and therapeutic effects of ZiBu PiYin Recipe (ZBPYR). Specifically, we assessed these animals for the formation, transport, and clearance of Aβ; the morphological structure of the blood-brain barrier (BBB); and the potential correlation between Aβ metabolism and intestinal microorganisms. RESULTS ZBPYR provided improvements in the structure of the BBB, attenuation of Aβ deposition in the central and peripheral tissues, and a delay in the development of DACD by improving the expression of Aβ production, transport, and clearance related protein in ZDF rats. In addition, ZBPYR improved the diversity and composition of intestinal microorganisms, decreased the abundance of Coprococcus, a bacterium closely related to Aβ production, and up regulate the abundance of Streptococcus, a bacterium closely related to Aβ clearance. CONCLUSION The mechanism of ZBPYR ability to ameliorate DACD may be closely related to changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Tingting Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ruiqi Feng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Weiming Ren
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tianyi Hang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tian Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Libin Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
2
|
Hiramatsu G, Mizutani R, Toume K, Inada Y, Sawahata M, Uta D, Komatsu K, Kume T. Preventive Effects of Psoraleae Semen Extracts on Cognitive Dysfunction in Alzheimer's Disease Model App NL-P-F Mice. Biol Pharm Bull 2025; 48:75-79. [PMID: 39894558 DOI: 10.1248/bpb.b24-00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oxidative stress and neuroinflammation accompanied by microglial activation are increased in Alzheimer's disease (AD) and contribute to the pathogenesis of AD. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a master transcription factor that acts as an endogenous defense mechanism against oxidative stress and inflammation and is a potential target for preventing AD. Psoraleae Semen (PS) reportedly has antioxidant and anti-inflammatory effects. This study aimed to examine the effects of PS extract (PSE) on Nrf2 activation and prevention of cognitive dysfunction in AppNL-P-F AD model mice. The effects of PSE on antioxidant response element (ARE) activity and cytoprotection in PC12 cells and on microglial activation in BV-2 cells were evaluated. PSE showed high ARE activity and prevented 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Moreover, PSE suppressed lipopolysaccharide-induced nitric oxide production in BV-2 cells. Oral administration of PSE prevented cognitive dysfunction in AppNL-P-F mice without affecting motor function. Our results support that PSE can contribute to the development of new preventive and therapeutic agents for AD focusing on Nrf2 activation.
Collapse
Affiliation(s)
- Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Reina Mizutani
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Natural Medicine, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan
| | - Yosuke Inada
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Petralla S, Saveleva L, Kanninen KM, Oster JS, Panayotova M, Fricker G, Puris E. Increased Expression of Transferrin Receptor 1 in the Brain Cortex of 5xFAD Mouse Model of Alzheimer's Disease Is Associated with Activation of HIF-1 Signaling Pathway. Mol Neurobiol 2024; 61:6383-6394. [PMID: 38296900 PMCID: PMC11339108 DOI: 10.1007/s12035-024-03990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Despite intensive research efforts, there are currently no effective treatments to cure and prevent AD. There is growing evidence that dysregulation of iron homeostasis may contribute to the pathogenesis of AD. Given the important role of the transferrin receptor 1 (TfR1) in regulating iron distribution in the brain, as well as in the drug delivery, we investigated its expression in the brain cortex and isolated brain microvessels from female 8-month-old 5xFAD mice mimicking advanced stage of AD. Moreover, we explored the association between the TfR1 expression and the activation of the HIF-1 signaling pathway, as well as oxidative stress and inflammation in 5xFAD mice. Finally, we studied the impact of Aβ1-40 and Aβ1-42 on TfR1 expression in the brain endothelial cell line hCMEC/D3. In the present study, we revealed that an increase in TfR1 protein levels observed in the brain cortex of 5xFAD mice was associated with activation of the HIF-1 signaling pathway as well as accompanied by oxidative stress and inflammation. Interestingly, incubation of Aβ peptides in hCMEC/D3 cells did not affect the expression of TfR1, which supported our findings of unaltered TfR1 expression in the isolated brain microvessels in 5xFAD mice. In conclusion, the study provides important information about the expression of TfR1 in the 5xFAD mouse model and the potential role of HIF-1 signaling pathway in the regulation of TfR1 in AD, which could represent a promising strategy for the development of therapies for AD.
Collapse
Affiliation(s)
- Sabrina Petralla
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Julia S Oster
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Maria Panayotova
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Hai Y, Ren K, Zhang Y, Yang L, Cao H, Yuan X, Su L, Li H, Feng X, Liu D. HIF-1α serves as a co-linker between AD and T2DM. Biomed Pharmacother 2024; 171:116158. [PMID: 38242039 DOI: 10.1016/j.biopha.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD)-related brain deterioration is linked to the type 2 diabetes mellitus (T2DM) features hyperglycemia, hyperinsulinemia, and insulin resistance. Hypoxia as a common risk factor for both AD and T2DM. Hypoxia-inducible factor-1 alpha (HIF-1α) acts as the main regulator of the hypoxia response and may be a key target in the comorbidity of AD and T2DM. HIF-1α expression is closely related to hyperglycemia, insulin resistance, and inflammation. Tissue oxygen consumption disrupts HIF-1α homeostasis, leading to increased reactive oxygen species levels and the inhibition of insulin receptor pathway activity, causing neuroinflammation, insulin resistance, abnormal Aβ deposition, and tau hyperphosphorylation. HIF-1α activation also leads to the deposition of Aβ by promoting the abnormal shearing of amyloid precursor protein and inhibiting the degradation of Aβ, and it promotes tau hyperphosphorylation by activating oxidative stress and the activation of astrocytes, which further exasperates AD. Therefore, we believe that HIF-α has great potential as a target for the treatment of AD. Importantly, the intracellular homeostasis of HIF-1α is a more crucial factor than its expression level.
Collapse
Affiliation(s)
- Yang Hai
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China.
| | - Ke Ren
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Yarong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Lili Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Haoshi Cao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xianxia Yuan
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Linling Su
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Hailong Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xiaoli Feng
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
5
|
Izuo N, Watanabe N, Noda Y, Saito T, Saido TC, Yokote K, Hotta H, Shimizu T. Insulin resistance induces earlier initiation of cognitive dysfunction mediated by cholinergic deregulation in a mouse model of Alzheimer's disease. Aging Cell 2023; 22:e13994. [PMID: 37822109 PMCID: PMC10652326 DOI: 10.1111/acel.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid β burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Nobuhiro Watanabe
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Yoshihiro Noda
- Department of Animal FacilityTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takashi Saito
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
- Department of Neurocognitive ScienceInstitute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Harumi Hotta
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Aging Stress Response Research Project TeamNational Center for Geriatrics and GerontologyObuJapan
| |
Collapse
|