1
|
Bernardino R, Carvalho AS, Hall MJ, Alves L, Leão R, Sayyid R, Pereira H, Beck HC, Pinheiro LC, Henrique R, Fleshner N, Matthiesen R. Profiling of urinary extracellular vesicle protein signatures from patients with cribriform and intraductal prostate carcinoma in a cross-sectional study. Sci Rep 2024; 14:25065. [PMID: 39443544 PMCID: PMC11500006 DOI: 10.1038/s41598-024-75272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Prognostic tests and treatment approaches for optimized clinical care of prostatic neoplasms are an unmet need. Prostate cancer (PCa) and derived extracellular vesicles (EVs) proteome changes occur during initiation and progression of the disease. PCa tissue proteome has been previously characterized, but screening of tissue samples constitutes an invasive procedure. Consequently, we focused this study on liquid biopsies, such as urine samples. More specifically, urinary small extracellular vesicle and particles proteome profiles of 100 subjects were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). We identified 171 proteins that were differentially expressed between intraductal prostate cancer/cribriform (IDC/Crib) and non-IDC/non-Crib after correction for multiple testing. However, the strong correlation between IDC/Crib and Gleason Grade complicates the disentanglement of the underlying factors driving this association. Nevertheless, even after accounting for multiple testing and adjusting for ISUP (International Society of Urological Pathology) grading, two proteins continued to exhibit significant differential expression between IDC/Crib and non-IDC/non-Crib. Functional enrichment analysis based on cancer hallmark proteins disclosed a clear pattern of androgen response down-regulation in urinary EVs from IDC/Crib compared to non-IDC/non-Crib. Interestingly, proteome differences between IDC and cribriform were more subtle, suggesting high proteome heterogeneity. Overall, the urinary EV proteome reflected partly the prostate pathology.
Collapse
Affiliation(s)
- Rui Bernardino
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada.
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Michael J Hall
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Alves
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | - Rashid Sayyid
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hermínia Pereira
- Department of Pathology, Centro Hospitalar E Universitário Lisboa Central, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, 5000, Odense, Denmark
| | - Luís Campos Pinheiro
- Department of Urology, Centro Hospitalar e Universitário Lisboa Central, Lisbon, Portugal
| | - Rui Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group - Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Neil Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Ludwig N, Reichert TE. Editorial: Special Issue on "The Role of Exosomes in Cancer Diagnosis and Therapy". Int J Mol Sci 2023; 24:13716. [PMID: 37762019 PMCID: PMC10530792 DOI: 10.3390/ijms241813716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
As a result of extensive research in recent years, small extracellular vesicles (sEVs), also known as exosomes, are now considered major contributors to intercellular communication in health and disease [...].
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | |
Collapse
|
3
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
4
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|