1
|
Maisto M, Piccolo V, Marzocchi A, Maresca DC, Romano B, Summa V, Tenore GC, Ercolano G, Ianaro A. Nutraceutical formulation based on a synergic combination of melatonin and palmitoylethanolamide for the management of allergic events. Front Nutr 2024; 11:1417747. [PMID: 39257610 PMCID: PMC11385308 DOI: 10.3389/fnut.2024.1417747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The management of allergic events is a growing global health issue, especially in industrialized countries. This disease is an immune-mediated process, regulated by the interaction of IgE with an allergen, resulting in mast cell activation, which concerns the release of several immune-inflammatory modulators, i.e., histamine, β-hexosaminidase, COX-2, IL-6, and TNF-α, responsible for the main allergic-reaction associated symptoms. The aim of the present study was the efficacy evaluation of an alternative remedy, an innovative nutraceutical formulation (NF) based on the synergic combination of melatonin (MEL) and palmitoylethanolamide (PEA) for the prevention and treatment of immune disease. At first, the intestinal bioaccessibility of PEA and MEL in NF was assessed at 1.6 and 36%, respectively. Then the MEL and PEA ability to modulate the release of immune-inflammatory modulators in the human mast cell line (HMC-1.2) at their bioaccessible concentration was investigated. Our results underline that NF treatment was able to reduce COX-2 mRNA transcription levels (-30% vs. STIM, p < 0.0001) in stimulated HMC-1.2 and to contract COX-2 enzymatic activity directly (IC50: 152 μg/mL). Additionally, NF showed valuable ability in reducing histamine and β-hexosaminidase release in stimulated HMC-1.2, as well as in decreasing TNF-α and IL-6 mRNA transcription levels and protein production.
Collapse
Affiliation(s)
- Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Benedetta Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Maisto M, Marzocchi A, Ciampaglia R, Piccolo V, Keivani N, Summa V, Tenore GC. Effects of Food-Derived Antioxidant Compounds on In Vitro Heavy Metal Intestinal Bioaccessibility. Antioxidants (Basel) 2024; 13:610. [PMID: 38790715 PMCID: PMC11118136 DOI: 10.3390/antiox13050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Environmental contamination by heavy metals (HMs) has emerged as a significant global issue in recent decades. Among natural substances, food-deriving polyphenols have found a valuable application in chelating therapy, partially limited by their low water solubility. Thus, three different hydroalcoholic extracts titrated in quercetin (QE), ellagic acid (EA), and curcumin (CUR) were formulated using maltodextrins as carriers, achieving a powder with a valuable water solubility (MQE 91.3 ± 1.2%, MEA 93.4 ± 2.1, and MCUR 89.3 ± 2%). Overcoming the problem of water solubility, such formulations were tested in an in vitro simulated gastrointestinal digestion experiment conducted on a water sample with standardized concentrations of the principal HMs. Our results indicate that regarding the nonessential HMs investigated (Pb, Cd, As, Sb, and Hg), MQE has been shown to be the most effective in increasing the HMs' non-bioaccessible concentration, resulting in concentration increases in Cd of 68.3%, in As of 51.9%, in Hg of 58.9%, in Pb of 271.4, and in Sb of 111.2% (vs control, p < 0.001) in non-bioaccessible fractions. Regarding the essential HMs, MEA has shown the greatest capability to increase their intestinal bioaccessibility, resulting in +68.5%, +61.1, and +22.3% (vs control, p < 0.001) increases in Cu, Zn, and Fe, respectively. Finally, considering the strong relation between the antiradical and chelating activities, the radical scavenging potentials of the formulations was assayed in DPPH and ABTS assays.
Collapse
Affiliation(s)
- Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.M.); (R.C.); (G.C.T.)
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.M.); (R.C.); (G.C.T.)
| | - Roberto Ciampaglia
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.M.); (R.C.); (G.C.T.)
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (N.K.); (V.S.)
| | - Niloufar Keivani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (N.K.); (V.S.)
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (N.K.); (V.S.)
| | - Gian Carlo Tenore
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.M.); (R.C.); (G.C.T.)
| |
Collapse
|
3
|
Keivani N, Piccolo V, Marzocchi A, Maisto M, Tenore GC, Summa V. Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants (Basel) 2024; 13:586. [PMID: 38790691 PMCID: PMC11117784 DOI: 10.3390/antiox13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Several medicinal herbal plants are extensively used as sources of bioactive compounds with beneficial effects on human health. This study assessed the procyanidin and polyphenol profiles together with the antioxidant potential of seven herbal medical matrices. To achieve this aim, procyanidin extraction from grape pomace was optimized and validated by monitoring monomeric-trimeric procyanidins. The proposed quantification method was applied to the seven medical herbs, and it proved to be a very efficient protocol for procyanidin-rich extracts analysis. In addition, the Paullinia cupana Kunth. seed was identified as a very rich source of procyanidins (about 5 mg/g dry matrix of each dimeric and about 3 mg/g dry matrix trimeric) with high antioxidant properties. The polyphenolic profile was assessed by HPLC-HESI-MS/MS analysis. The in vitro antioxidant activity was evaluated by DPPH assay to explore the antioxidant properties of the extracts, which were substantially higher in Peumus boldus Molina leaves extracts (935.23 ± 169 μmol of Trolox equivalent/g of dry weight) concerning the other matrices. Moreover, a high Pearson coefficient value was observed between the total flavonoid content (TFC) and DPPH in comparison with the total polyphenol content (TPC) and DPPH, indicating flavonoids as the principal bioactive with antioxidant activity in the extracts.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (N.K.); (V.P.); (A.M.); (M.M.); (G.C.T.)
| |
Collapse
|
4
|
Piccolo V, Maisto M, Schiano E, Iannuzzo F, Keivani N, Manuela Rigano M, Santini A, Novellino E, Carlo Tenore G, Summa V. Phytochemical investigation and antioxidant properties of unripe tomato cultivars (Solanum lycopersicum L.). Food Chem 2024; 438:137863. [PMID: 37980871 DOI: 10.1016/j.foodchem.2023.137863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Unripe tomatoes are among the main waste produced during tomato cultivation and processing. In this study, unripe tomatoes from seven different Italian cultivars have been investigated to evaluate their nutraceutical potential. Phytochemical investigation allowed shedding light on the identification of seventy-five bioactive compounds. The highest amount of polyphenolic and glycoalkaloids along with the high level of antioxidant activities was found in the Datterini tomatoes variety. The peculiarity of this variety is the high chlorogenic acid content, being ten times higher compared to the other cultivars examined. Moreover, the total α-tomatine amount has been found substantially higher (34.699 ± 1.101 mg/g dry weight) with respect to the other tomato varieties analyzed. Furthermore, the cultivars metabolomic profiles were investigated with the PCA approach. Based on Datterini cultivar's metabolomic profile, its waste-recovery could represent a good option for further added value products in pharmaceutical and nutraceutical areas with a high α-tomatine content.
Collapse
Affiliation(s)
- Vincenzo Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Maisto
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Niloufar Keivani
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonello Santini
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, University Cattolica del Sacro Cuore, Largo Francesco Vito, 00168 Roma, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
5
|
Di Lorenzo R, Falanga D, Ricci L, Colantuono A, Greco G, Angelillo M, Nugnes F, Di Serio T, Costa D, Tito A, Laneri S. NAD-Driven Sirtuin Activation by Cordyceps sinensis Extract: Exploring the Adaptogenic Potential to Promote Skin Longevity. Int J Mol Sci 2024; 25:4282. [PMID: 38673866 PMCID: PMC11049886 DOI: 10.3390/ijms25084282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, there has been increasing interest in utilizing Traditional Chinese Medicine principles and natural bioactive compounds to combat age-related ailments and enhance longevity. A Cordyceps sinensis mycelium hydroethanolic extract (CsEx), which was standardized in cordycepin and adenosine using UHPLC-DAD, was investigated for its adaptogenic properties using in vitro assays and a double-blind, placebo-controlled clinical trial involving 40 subjects. The CsEx demonstrated activity at a concentration of 0.0006%, significantly increasing sirtuin expression (SirT1: +33%, SirT3: +10%, SirT6: +72%, vs. CTR, p < 0.05) and NAD+ synthesis in HaCat cells (+20% vs. CTR, p < 0.001). Moreover, the CsEx boosted ATP production by 68% in skin cells, correlating with higher skin energy values (+52.0% at D28, p < 0.01) in the clinical trial. Additionally, CsEx notably reduced cytosolic reactive oxygen species (ROS) by 30% in HaCaT cells (p < 0.05) and enhanced collagen production both in vitro (+69% vs. CTR, p < 0.01) and in vivo (+10% vs. D0, p < 0.01), confirmed by ultrasound examination. Furthermore, CsEx's stimulation of fibroblasts, coupled with its antioxidant and energizing properties, led to a significant reduction in wrinkles by 28.0% (D28, p < 0.001). This study underscores Cordyceps sinensis hydroethanolic extract's potential in regulating skin cell energy metabolism and positively influencing the mechanisms associated with skin longevity control.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | - Danila Falanga
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Lucia Ricci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | - Antonio Colantuono
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Giovanni Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | | | - Fiorella Nugnes
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Teresa Di Serio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | | | - Annalisa Tito
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| |
Collapse
|
6
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Iannuzzo F, Cicatiello AG, Sagliocchi S, Schiano E, Nappi A, Miro C, Stornaiuolo M, Mollica A, Tenore GC, Dentice M, Novellino E. Therapeutic Effect of an Ursolic Acid-Based Nutraceutical on Neuronal Regeneration after Sciatic Nerve Injury. Int J Mol Sci 2024; 25:902. [PMID: 38255977 PMCID: PMC10815361 DOI: 10.3390/ijms25020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Elisabetta Schiano
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Ettore Novellino
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
8
|
Liu W, Xu J, Shuai X, Geng Q, Guo X, Chen J, Li T, Liu C, Dai T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int J Biol Macromol 2023; 253:126617. [PMID: 37652319 DOI: 10.1016/j.ijbiomac.2023.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.
Collapse
Affiliation(s)
- Wuzhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Bosley S, Krueger CG, Birmingham A, Howell AB, Reed JD. Improved in vitro Hemagglutination Assays Utilizing P-Type and Type 1 Uropathogenic Escherichia coli to Evaluate Bacterial Anti-Adhesion Activity of Cranberry Products. J Diet Suppl 2023; 21:327-343. [PMID: 37961872 DOI: 10.1080/19390211.2023.2276962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cranberries have a long history of use in the prevention of urinary tract infections. Cranberry products vary in proanthocyanidin content, a compound implicated in preventing the adhesion of uropathogenic Escherichia coli (E. coli) to uroepithelial cells. Testing is routinely done by cranberry product formulators to evaluate in vitro bacterial anti-adhesion bioactivity, shelf-life, and potential efficacy of cranberry products for consumer use to maintain urinary tract health. Hemagglutination assays evaluate the anti-adhesion bioactivity of cranberry products by determining how effectively the products prevent agglutination of specific red blood cells with E. coli expressing P-type and Type 1 fimbriae. The current study sought to improve upon an established anti-adhesion assay method by expanding the number of E. coli strains used to broaden potential in vivo efficacy implications and presenting results using photomicrographic data to improve accuracy and build databases on products that are routinely tested. Different lots of cranberry powder ingredient and two formulated products were tested independently for anti-adhesion activity using the established method and the improved method. Positive harmonization of results on the same samples using rigorous controls was achieved and provides the substantiation needed for the cranberry industry to utilize the improved, rapid in vitro testing method to standardize cranberry products for sufficient anti-adhesion bioactivity and maintain consumer confidence.
Collapse
Affiliation(s)
- Scott Bosley
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- University of WI-Madison, Madison, WI, USA
| | | | - Amy B Howell
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Marucci Center for Blueberry Cranberry Research, Rutgers, The State University of NJ, Chatsworth, NJ, USA
| | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- University of WI-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Maisto M, Marzocchi A, Keivani N, Piccolo V, Summa V, Tenore GC. Natural Chalcones for the Management of Obesity Disease. Int J Mol Sci 2023; 24:15929. [PMID: 37958912 PMCID: PMC10648025 DOI: 10.3390/ijms242115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 59, 80131 Naples, Italy; (A.M.); (N.K.); (V.P.); (V.S.); (G.C.T.)
| | | | | | | | | | | |
Collapse
|
11
|
Musto G, Schiano E, Iannuzzo F, Tenore GC, Novellino E, Stornaiuolo M. Genotoxicity Assessment of Nutraceuticals Extracted from Thinned Nectarine (Prunus persica L.) and Grape Seed (Vitis Vinifera L.) Waste Biomass. Foods 2023; 12:foods12061171. [PMID: 36981098 PMCID: PMC10048668 DOI: 10.3390/foods12061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Agri-food by-products represent a considerable portion of the waste produced in the world and especially when incorrectly disposed of, contribute to air, soil, and water pollution. Recently, recycling of food waste has proven to be an attractive area of research for pharmaceutical companies, that use agri-food by-products (leaves, bark, roots, seeds, second-best vegetables) as alternative raw material for the extraction of bioactive compounds. Developers and producers are however, advised to assess the safety of nutraceuticals obtained from biowaste that, in virtue of its chemical complexity, could undermine the overall safety of the final products. Here, in compliance with EFSA regulations, we use the Ames test (OECD 471) and the micronucleus test (OECD 487) to assess the mutagenicity of two nutraceuticals obtained from food waste. The first consists of grape seeds (Vitis vinifera L.) that have undergone a process of food-grade depolymerization of proanthocyanidins to release more bioavailable flavan-3-ols. The second nutraceutical product consists of thinned nectarines (Prunus persica L. var nucipersica) containing abscisic acid and polyphenols. The results presented here show that these products are, before as well as after metabolization, non-mutagenic, up to the doses of 5 mg and 100 μg per plate for the Ames and micronucleus test, respectively, and can be thus considered genotoxically safe.
Collapse
Affiliation(s)
- Giorgia Musto
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
12
|
Validation of an LC-MS/MS Method for the Determination of Abscisic Acid Concentration in a Real-World Setting. Foods 2023; 12:foods12051077. [PMID: 36900594 PMCID: PMC10000556 DOI: 10.3390/foods12051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
One of the most relevant aspects in evaluating the impact of natural bioactive compounds on human health is the assessment of their bioavailability. In this regard, abscisic acid (ABA) has attracted particular interest as a plant-derived molecule mainly involved in the regulation of plant physiology. Remarkably, ABA was also found in mammals as an endogenous hormone involved in the upstream control of glucose homeostasis, as evidenced by its increase after glucose load. The present work focused on the development and validation of a method for the determination of ABA in biological samples through liquid-liquid extraction (LLE), followed by liquid mass spectrometry (LC-MS) of the extract. To test method suitability, this optimized and validated method was applied to a pilot study on eight healthy volunteers' serum levels to evaluate ABA concentration after consumption of a standardized test meal (STM) and the administration of an ABA-rich nutraceutical product. The results obtained could meet the demands of clinical laboratories to determine the response to a glucose-containing meal in terms of ABA concentration. Interestingly, the detection of this endogenous hormone in such a real-world setting could represent a useful tool to investigate the occurrence of impaired ABA release in dysglycemic individuals and to monitor its eventual improvement in response to chronic nutraceutical supplementation.
Collapse
|
13
|
Natural Polyphenols for Prevention and Treatment of Urinary Tract Infections. Int J Mol Sci 2023; 24:ijms24043277. [PMID: 36834683 PMCID: PMC9966151 DOI: 10.3390/ijms24043277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Urinary tract infections (UTIs) are the second most common type of bacterial infection worldwide. UTIs are gender-specific diseases, with a higher incidence in women. This type of infection could occur in the upper part of the urogenital tract, leading to pyelonephritis and kidney infections, or in the lower part of the urinary tract, leading to less serious pathologies, mainly cystitis and urethritis. The most common etiological agent is uropathogenic E. coli (UPEC), followed by Pseudomonas aeruginosa and Proteus mirabilis. Conventional therapeutic treatment involves the use of antimicrobial agents, but due to the dramatic increase in antimicrobial resistance (AMR), this strategy has partially lost its therapeutic efficacy. For this reason, the search for natural alternatives for UTI treatment represents a current research topic. Therefore, this review summarized the results of in vitro and animal- or human-based in vivo studies aimed to assess the potential therapeutic anti-UTI effects of natural polyphenol-based nutraceuticals and foods. In particular, the main in vitro studies were reported, describing the principal molecular therapeutic targets and the mechanism of action of the different polyphenols studied. Furthermore, the results of the most relevant clinical trials for the treatment of urinary tract health were described. Future research is needed to confirm and validate the potential of polyphenols in the clinical prophylaxis of UTIs.
Collapse
|