1
|
Ferrara C, Battaglia R, Caponnetto A, Fazzio A, Stella M, Barbagallo C, Musso N, Lunelio F, Vento ME, Borzì P, Scollo P, Barbagallo D, Ragusa M, Pernagallo S, Di Pietro C. MicroRNAs in seminal plasma are able to discern infertile men at increased risk of developing testicular cancer. Mol Oncol 2024. [PMID: 39680568 DOI: 10.1002/1878-0261.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Male infertility is a risk factor for the development of testicular germ cell tumors. In this study, we investigated microRNA profiles in seminal plasma to identify potential noninvasive biomarkers able to discriminate the men at highest risk of developing cancer among the infertile population. We compared the microRNA profiles of individuals affected by testicular germ cell tumors and healthy individuals with normal or impaired spermiograms using high-throughput technology and confirmed the results by single-assay digital PCR. We found that miR-221-3p and miR-222-3p were downregulated and miR-126-3p was upregulated in cancer patients compared to both infertile and fertile men. ROC curve analysis confirmed that miR-126 upregulation is able to identify cancer patients among the infertile male population. In addition, in-depth bioinformatics analysis based on weighted gene co-expression networks showed that the identified miRNAs regulate cellular pathways involved in cancer.
Collapse
Affiliation(s)
- Carmen Ferrara
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Angela Caponnetto
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Anna Fazzio
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Nicolò Musso
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | | | | | | | - Paolo Scollo
- Obstetrics and Gynecology Division, Maternal and Child Department, Cannizzaro Hospital Catania, Kore University of Enna, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | | | - Cinzia Di Pietro
- Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| |
Collapse
|
2
|
Barbagallo D, Ponti D, Bassani B, Bruno A, Pulze L, Akkihal SA, George-William JN, Gundamaraju R, Campomenosi P. MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces. Int J Mol Sci 2024; 25:8191. [PMID: 39125761 PMCID: PMC11311375 DOI: 10.3390/ijms25158191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Shreya A. Akkihal
- Independent Researcher, 35004 SE Swenson St, Snoqualmie, WA 98065, USA;
| | - Jonahunnatha N. George-William
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Rohit Gundamaraju
- Department of Laboratory Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
- ER Stress and Mucosal Immunology Team, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| |
Collapse
|
3
|
Mao Y, Wang J, Wang Y, Fu Z, Dong L, Liu J. Hypoxia induced exosomal Circ-ZNF609 promotes pre-metastatic niche formation and cancer progression via miR-150-5p/VEGFA and HuR/ZO-1 axes in esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:133. [PMID: 38472174 DOI: 10.1038/s41420-024-01905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Exosomes derived from cancer are regarded as significant mediators of cancer-host crosstalk. Hypoxia, on the other hand, is one of the essential characteristics of solid tumors. This research set out to discover how circulating exosomes from hypoxic esophageal squamous cell carcinoma (ESCC) contribute to the formation of metastatic niches and distant metastasis. First, we noticed that human umbilical vein endothelial cells (HUVECs) had their tight connections disrupted and the expression of proteins involved in angiogenesis boosted by ESCC hypoxic exosomes. Hypoxia significantly induced Circ-ZNF609 expression in exosomes from ESCC, which was then internalized by HUVECs, as determined by circular RNA screening. High Circ-ZNF609 expression in HUVECs facilitated angiogenesis and vascular permeability, thereby promoting pre-metastatic niche formation, and enhancing distant metastasis in vitro and in vivo. Exosomal Circ-ZNF609 activated vascular endothelial growth factor A (VEGFA) mechanistically by sponging miR-150-5p. Exosomal Circ-ZNF609 also interacted with HuR and inhibited HuR binding to ZO-1, Claudin-1, and Occludin mRNAs, thereby reducing their translation. Collectively, our findings identified an essential function for exosomal Circ-ZNF609 from ESCC cells, suggesting the potential therapeutic value of exosomes for ESCC patients.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China.
| | - Jiahao Wang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jia Liu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
4
|
Caponnetto A, Ferrara C, Fazzio A, Agosta N, Scribano M, Vento ME, Borzì P, Barbagallo C, Stella M, Ragusa M, Scollo P, Barbagallo D, Purrello M, Di Pietro C, Battaglia R. A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells. Genes (Basel) 2024; 15:124. [PMID: 38275605 PMCID: PMC10815046 DOI: 10.3390/genes15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Noemi Agosta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Marianna Scribano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Maria Elena Vento
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Placido Borzì
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Paolo Scollo
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy;
- Maternal and Child Department, Obstetrics and Gynecology Unit, Cannizzaro Hospital, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| |
Collapse
|
5
|
Su F, Liu Y, Zong Y, Gao Z, Zhou G, Deng C, Liu Y, Zeng Y, Ma X, Wang Y, Wu Y, Xu F, Guan L, Liu B. Identification of circulating miRNA as early diagnostic molecular markers in malignant glioblastoma base on decision tree joint scoring algorithm. J Cancer Res Clin Oncol 2023; 149:17823-17836. [PMID: 37943358 DOI: 10.1007/s00432-023-05448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The lack of clinical markers prevents early diagnosis of glioblastoma (GBM). Many studies have found that circulating microRNAs (miRNAs) can be used as early diagnostic markers of malignant tumours. Therefore, the identification of novel circulating miRNA biomolecular markers could be beneficial to clinicians in the early diagnosis of GBM. METHODS We developed a decision tree joint scoring algorithm (DTSA), systematically integrating significance analysis of microarray (SAM), Pearson hierarchical clustering, T test, Decision tree and Entropy weight score algorithm, to screen out circulating miRNA molecular markers with high sensitivity and accuracy for early diagnosis of GBM. RESULTS DTSA was developed and applied for GBM datasets and three circulating miRNA molecular markers were identified, namely, hsa-miR-2278, hsa-miR-555 and hsa-miR-892b. We have found that hsa-miR-2278 and hsa-miR-892b regulate the GBM pathway through target genes, promoting the development of GBM and affecting the survival of patients. DTSA has better classification effect in all data sets than other classification algorithms, and identified miRNAs are better than existing markers of GBM. CONCLUSION These results suggest that DTSA can effectively identify circulating miRNA, thus contributing to the early diagnosis and personalised treatment of GBM.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghua Zong
- Department of Modern Medicine, University of Tibetan Medicine, Lhasa, 850000, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, 150081, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yue Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yinwei Wu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Fusheng Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, 200438, China.
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China.
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
6
|
Ehtewish H, Mesleh A, Ponirakis G, Lennard K, Al Hamad H, Chandran M, Parray A, Abdesselem H, Wijten P, Decock J, Alajez NM, Ramadan M, Khan S, Ayadathil R, Own A, Elsotouhy A, Albagha O, Arredouani A, Blackburn JM, Malik RA, El-Agnaf OMA. Profiling the autoantibody repertoire reveals autoantibodies associated with mild cognitive impairment and dementia. Front Neurol 2023; 14:1256745. [PMID: 38107644 PMCID: PMC10722091 DOI: 10.3389/fneur.2023.1256745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Background Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.
Collapse
Affiliation(s)
- Hanan Ehtewish
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Areej Mesleh
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Katie Lennard
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Houari Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Jonathan M. Blackburn
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
7
|
Tirpe A, Streianu C, Tirpe SM, Kocijancic A, Pirlog R, Pirlog B, Busuioc C, Pop OL, Berindan-Neagoe I. The Glioblastoma CircularRNAome. Int J Mol Sci 2023; 24:14545. [PMID: 37833993 PMCID: PMC10572686 DOI: 10.3390/ijms241914545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.
Collapse
Affiliation(s)
- Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Cristian Streianu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Stefana Maria Tirpe
- Department of Neurology, Ortenau-Klinikum Lahr, Klostenstrasse 19, 7933 Lahr, Germany;
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| | - Bianca Pirlog
- Department of Neurology, County Emergency Hospital, 400012 Cluj-Napoca, Romania;
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| |
Collapse
|
8
|
Katsushima K, Joshi K, Perera RJ. Diagnostic and therapeutic potential of circular RNA in brain tumors. Neurooncol Adv 2023; 5:vdad063. [PMID: 37334165 PMCID: PMC10276536 DOI: 10.1093/noajnl/vdad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA with a stable cyclic structure. They are expressed in various tissues and cells with conserved, specific characteristics. CircRNAs have been found to play critical roles in a wide range of cellular processes by regulating gene expression at the epigenetic, transcriptional, and posttranscriptional levels. There is an accumulation of evidence on newly discovered circRNAs, their molecular interactions, and their roles in the development and progression of human brain tumors, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Here we summarize the current state of knowledge of the circRNAs that have been implicated in brain tumor pathogenesis, particularly in gliomas and medulloblastomas. In providing a comprehensive overview of circRNA studies, we highlight how different circRNAs have oncogenic or tumor-suppressive roles in brain tumors, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. This review article discusses circRNAs' functional roles and the prospect of using them as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Kandarp Joshi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Ranjan J Perera
- Corresponding Author: Ranjan J. Perera, PhD, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA ()
| |
Collapse
|