1
|
Shan H, Tian G, Zhang Y, Qiu Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biol Ther 2024; 25:2392341. [PMID: 39164192 PMCID: PMC11340766 DOI: 10.1080/15384047.2024.2392341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-β (TGF-β) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-β signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hui Shan
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Chen J, Ji C, Liu S, Wang J, Wang C, Pan J, Qiao J, Liang Y, Cai M, Ma J. Transforming growth factor-β (TGF-β) signaling pathway-related genes in predicting the prognosis of colon cancer and guiding immunotherapy. CANCER PATHOGENESIS AND THERAPY 2024; 2:299-313. [PMID: 39371100 PMCID: PMC11447362 DOI: 10.1016/j.cpt.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 10/08/2024]
Abstract
Background Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME) regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk prediction signature for colon cancer, which may provide a means for developing new effective treatment strategies. Methods Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy. Results Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prognosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of 0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune checkpoints in the TME, suggesting that these patients had better responses to immunotherapy. Conclusions Patients with colon cancer were divided into two subtypes with different survival and immune characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The constructed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer, with potential utility for screening individuals for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Che Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jue Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinyu Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
3
|
Liu S, Zhang Z, Wang Z, Li J, Shen L. Genome-wide CRISPR screening identifies the pivotal role of ANKRD42 in colorectal cancer metastasis through EMT regulation. IUBMB Life 2024; 76:803-819. [PMID: 38822625 DOI: 10.1002/iub.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Colorectal cancer (CRC), a pervasive and lethal malignancy of gastrointestinal cancer, imposes significant challenges due to the occurrence of distant metastasis in advanced stages. Understanding the intricate regulatory mechanisms driving CRC distant metastasis is of paramount importance. CRISPR-Cas9 screening has emerged as a powerful tool for investigating tumor initiation and progression. However, its application in studying CRC distant metastasis remains largely unexplored. To establish a model that faithfully recapitulates CRC liver metastasis in patients, we developed an in vivo genome-wide CRISPR-Cas9 screening approach using a spleen-injected liver metastasis mouse model. Through comprehensive screening of a whole-genome sgRNA library, we identified ANKRD42 as a pivotal regulatory gene facilitating CRC liver metastasis. Analysis of the TCGA database and our clinical cohorts unveiled heightened ANKRD42 expression in metastases. At the cellular level, the attenuation of ANKRD42 impaired the migration and invasion processes of tumor cells. In vivo experiments further validated these observations, highlighting the diminished liver metastatic capacity of tumor cells upon ANKRD42 knockdown. To unravel the specific mechanisms by which ANKRD42 regulates CRC distant metastasis, we leveraged patient-derived organoid (PDO) models. Depleting ANKRD42 in PDOs sourced from liver metastases precipitated the downregulation of pivotal genes linked to epithelial-mesenchymal transition (EMT), including CDH2 and SNAI2, thereby effectively suppressing tumor metastasis. This study not only establishes a conceptual framework but also identifies potential therapeutic avenues for advanced-stage distant metastasis in CRC patients.
Collapse
Affiliation(s)
- Shengde Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zizhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Ahmad MS, Braoudaki M, Siddiqui SS. Differential expression of ST6GALNAC1 and ST6GALNAC2 and their clinical relevance to colorectal cancer progression. PLoS One 2024; 19:e0311212. [PMID: 39348343 PMCID: PMC11441655 DOI: 10.1371/journal.pone.0311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Colorectal cancer (CRC) has become a significant global health concern and ranks among the leading causes of morbidity and mortality worldwide. Due to its malignant nature, current immunotherapeutic treatments are used to tackle this issue. However, not all patients respond positively to treatment, thereby limiting clinical effectiveness and requiring the identification of novel therapeutic targets to optimise current strategies. The putative ligand of Siglec-15, Sialyl-Tn (STn), is associated with tumour progression and is synthesised by the sialyltransferases ST6GALNAC1 and ST6GALNAC2. However, the deregulation of both sialyltransferases within the literature remain limited, and the involvement of microRNAs (miRNAs) in STn production require further elucidation. Here, we identified miRNAs involved in the regulation of ST6GALNAC1 via a computational approach and further analysis of miRNA binding sites were determined. In silico tools predicted miR-21, miR-30e and miR-26b to regulate the ST6GALNAC1 gene, all of which had shown significant upregulated expression in the tumour cohort. Moreover, each miRNA displayed a high binding affinity towards the seed region of ST6GALNAC1. Additionally, enrichment analysis outlined pathways associated with several cancer hallmarks, including epithelial to mesenchymal transition (EMT) and MYC targets associated with tumour progression. Furthermore, our in silico findings demonstrated that the ST6GALNAC1 expression profile was significantly downregulated in CRC tumours, and its low expression correlated with poor survival outcomes when compared with patient survival data. In comparison to its counterpart, there were no significant differences in the expression of ST6GALNAC2 between normal and malignant tissues, which was further evidenced in our immunohistochemistry analysis. Immunohistochemistry staining highlighted significantly higher expression was more prevalent in normal human tissues with regard to ST6GALNAC1. In conclusion, the integrated in silico analysis highlighted that STn production is not reliant on deregulated sialyltransferase expression in CRC, and ST6GALNAC1 expression is regulated by several oncomirs. We proposed the involvement of other sialyltransferases in the production of the STn antigen and CRC progression via the Siglec-15/Sia axis.
Collapse
Affiliation(s)
- Mohammed Saqif Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
5
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
6
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven D Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callum T McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ravi K Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
7
|
Fathima A, Farboodniay Jahromi MA, Begum SA, Jamma T. Withametelin inhibits TGF-β induced Epithelial-to-Mesenchymal Transition and Programmed-Death Ligand-1 expression in vitro. Front Oncol 2024; 14:1435516. [PMID: 39077463 PMCID: PMC11284055 DOI: 10.3389/fonc.2024.1435516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Withanolides are a group of naturally occurring plant-based small molecules known for their wide range of host cellular functions. The anticancer potential of withanolides has been explored in varying cancer cell lines in vitro. Based on our prior studies, among the tested withanolides, withametelin (WM) has shown significant cytotoxicity with the highest efficacy on HCT-116 colon cancer cells (IC50 0.719 ± 0.12μM). Treatment with WM reduced the TGF-β driven proliferation, colony-forming ability, migration, and invasiveness of HCT-116 cells in vitro. WM also downregulated the expression of mesenchymal markers such as N-CADHERIN, SNAIL, and SLUG in HCT-116 cells. At the molecular level, WM inhibited TGF-β induced phosphorylation of SMAD2/3 and reduced the expression of an immune checkpoint inhibitor programmed-death ligand-1 (PD-L1). Our study highlights the possible anticancer mechanisms of WM involving modulation of the TGF-β pathway and associated target gene expression, suggesting its potential utility in cancer therapy.
Collapse
Affiliation(s)
- Ashna Fathima
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| | | | - Sajeli A. Begum
- Department of Pharmacy, Birla Institute of Technology & Science, Hyderabad, India
| | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| |
Collapse
|
8
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
10
|
Wei HT, Xie LY, Liu YG, Deng Y, Chen F, Lv F, Tang LP, Hu BL. Elucidating the role of angiogenesis-related genes in colorectal cancer: a multi-omics analysis. Front Oncol 2024; 14:1413273. [PMID: 38962272 PMCID: PMC11220232 DOI: 10.3389/fonc.2024.1413273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its underlying mechanisms demand further exploration. This study aimed to elucidate the significance of angiogenesis-related genes (ARGs) in CRC through comprehensive multi-omics analysis. Methods CRC patients were categorized according to ARGs expression to form angiogenesis-related clusters (ARCs). We investigated the correlation between ARCs and patient survival, clinical features, consensus molecular subtypes (CMS), cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations, and response to immunotherapy. Utilizing three machine learning algorithms (LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs, further validated in independent cohorts. A prognostic signature based on key ARGs was developed and analyzed at the scRNA-seq level. Validation of gene expression in external cohorts, clinical tissues, and blood samples was conducted via RT-PCR assay. Results Two distinct ARC subtypes were identified and were significantly associated with patient survival, clinical features, CMS, CSC index, and TME, but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP) were identified as key ARCs, capable of distinguishing ARC subtypes. The prognostic signature based on these genes effectively stratified patients into high- or low-risk categories. scRNA-seq analysis showed that these genes were predominantly expressed in immune cells rather than in cancer cells. Validation in two external cohorts and through clinical samples confirmed significant expression differences between CRC and controls. Conclusion This study identified two ARG subtypes in CRC and highlighted four key genes associated with these subtypes, offering new insights into personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Hao-tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-ye Xie
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong-gang Liu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ya Deng
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Chen
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Lv
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-ping Tang
- Department of Information, Library of Guangxi Medical University, Nanning, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
11
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
12
|
Li J, Jiang Z, He J, Yang K, Chen J, Deng Q, Li X, Wu F, Xu S, Jiang Z. Effect of CHRDL1 on angiogenesis and metastasis of colorectal cancer cells via TGF-β/VEGF pathway. Mol Carcinog 2024; 63:1092-1105. [PMID: 38415870 DOI: 10.1002/mc.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor with the third incidence and death in the world. There is still an urgent need for effective therapeutic targets and prognostic markers for CRC. Herein, we report a novel potential target and marker, Chordin like-1 (CHRDL1). The function of CHRDL1 has been reported in gastric cancer, breast cancer, and oral squamous cell carcinoma. However, the biological effect of CHRDL1 in CRC remains unrevealed. Transwell and tube formation experiments were used to determine the biological function of CHRDL1. Western blot and rescue experiments were used to determine the specific mechanisms of CHRDL1. Results showed CHRDL1 is significantly downregulated in CRC cell lines and tissues. In vitro, experiments confirmed that CHRDL1 can inhibit cell growth, migration, invasion, angiogenesis and reverse epithelial-mesenchymal transformation. In vivo, experiments proved that it can inhibit tumor growth and metastasis. Mechanistically, we newly find that CHRDL1 exerts biological functions through the transforming growth factor-beta (TGF-β)/vascular endothelial growth factor signaling axis in vitro and in vivo. Therefore, we concluded that CHRDL1 reduces the growth, migration, and angiogenesis of CRC cells by downregulating TGF-β signaling. Our new findings on CHRDL1 may provide a basis for clinical antiangiogenesis therapy and the prognosis of CRC.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Xu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Abutalebi M, Li D, Ahmad W, Mokhtari K, Entezari M, Hashemi M, Fu J, Maghsoudloo M. Discovery of PELATON links to the INHBA gene in the TGF-β pathway in colorectal cancer using a combination of bioinformatics and experimental investigations. Int J Biol Macromol 2024; 270:132239. [PMID: 38735606 DOI: 10.1016/j.ijbiomac.2024.132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-β) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-β pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Abutalebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China
| | - Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
14
|
Ray SK, Mukherjee S. Molecular perspectives on systemic priming and concomitant immunity in colorectal carcinoma. J Egypt Natl Canc Inst 2024; 36:7. [PMID: 38462581 DOI: 10.1186/s43046-024-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
The progression of metastasis, a complex systemic disease, is facilitated by interactions between tumor cells and their isolated microenvironments. Over the past few decades, researchers have investigated the metastatic spread of cancer extensively, identifying multiple stages in the process, such as intravasation, extravasation, tumor latency, and the development of micrometastasis and macrometastasis. The premetastatic niche is established in target organs by the accumulation of aberrant immune cells and extracellular matrix proteins. The "seed and soil" idea, which has become widely known and accepted, is being used to this day to guide cancer studies. Changes in the local and systemic immune systems have a major impact on whether an infection spreads or not. The belief that the immune response may play a role in slowing tumor growth and may be beneficial against the metastatic disease underpins the responsiveness shown in the immunological landscape of metastasis. Various hypotheses on the phylogenesis of metastases have been proposed in the past. The primary tumor's secreting factors shape the intratumoral microenvironment and the immune landscape, allowing this progress to be made. Therefore, it is evident that among disseminated tumor cells, there are distinct phenotypes that either carry budding for metastasis or have the ability to obtain this potential or in systemic priming through contact with substantial metastatic niches that have implications for medicinal chemistry. Concurrent immunity signals that the main tumor induces an immune response that may not be strong enough to eradicate the tumor. Immunotherapy's success with some cancer patients shows that it is possible to effectively destroy even advanced-stage tumors by modifying the microenvironment and tumor-immune cell interactions. This review focuses on the metastasome in colorectal carcinoma and the therapeutic implications of site-specific metastasis, systemic priming, tumor spread, and the relationship between the immune system and metastasis.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
| |
Collapse
|
15
|
Liang Q, Hu Y, Yuan Q, Yu M, Wang H, Zhao B. MET exon 14 skipping mutation drives cancer progression and recurrence via activation of SMAD2 signalling. Br J Cancer 2024; 130:380-393. [PMID: 38110666 PMCID: PMC10844616 DOI: 10.1038/s41416-023-02495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND c-Met encoded by the proto-oncogene MET, also known as hepatocyte growth factor (HGF) receptor, plays a crucial role in cellular processes. MET exon 14 skipping alteration (METΔ14EX) is a newly discovered MET mutation. SMAD2 is an important downstream transcription factor in TGF-β pathway. Unfortunately, the mechanisms by which METΔ14EX leads to oncogenic transformation are scarcely understood. The relationship between METΔ14EX and SMAD2 has not been studied yet. METHODS We generate METΔ14EX models by CRISPR-Cas9. In vitro transwell, wound-healing, soft-agar assay, in vivo metastasis and subcutaneous recurrence assay were used to study the role of METΔ14EX in tumour progression. RNA-seq, Western blotting, co-immunoprecipitation (CO-IP) and immunofluorescent were performed to explore the interaction between c-Met and SMAD2. RESULTS Our results demonstrated that METΔ14EX, independent of HGF, can prolong the constitutive activation of c-Met downstream signalling pathways by impeding c-Met degradation and facilitating tumour metastasis and recurrence. Meanwhile, METΔ14EX strengthens the interaction between c-Met and SMAD2, promoting SMAD2 phosphorylation. Therapeutically, MET inhibitor crizotinib impedes METΔ14EX-mediated tumour metastasis by decreasing SMAD2 phosphorylation. CONCLUSIONS These data elucidated the previously unrecognised role of METΔ14EX in cancer progression via activation of SMAD2 independent of TGF-β, which helps to develop more effective therapies for such patients. METΔ14EX alteration significantly triggers tumour progression via activation of SMAD2 signalling that are involved in activating tumour invasion, metastasis and recurrence. On the left, in the MET wild-type (METWT), the juxtamembrane (JM) domain is involved in the regulation of tyrosine kinase activity, receptor degradation, and caspase cleavage. On the right, the METΔ14EX mutation leads to the loss of the juxtamembrane domain, resulting in an abnormal MET protein lacking a CBL-binding site. This causes the accumulation of truncated MET receptors followed by constitutive activation of the MET signalling pathway. Thus, the METΔ14EX-mutated protein has strong binding and phosphorylation to SMAD2, which results in the phosphorylation of a large number of SMAD2/3 proteins that combine with SMAD4 to form a complex in the nucleus, activating downstream signalling pathways, such as EMT and ECM remodelling, resulting in tumour progression and recurrence. TF transcription factor.
Collapse
Affiliation(s)
- Qiaoyan Liang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yajun Hu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingyun Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Papavassiliou KA, Delle Cave D, Papavassiliou AG. Targeting the TGF-β Signaling Axis in Metastatic Colorectal Cancer: Where Do We Stand? Int J Mol Sci 2023; 24:17101. [PMID: 38069421 PMCID: PMC10706985 DOI: 10.3390/ijms242317101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide [...].
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
17
|
Li M, Song J, Wang L, Wang Q, Huang Q, Mo D. Natural killer cell-related prognosis signature predicts immune response in colon cancer patients. Front Pharmacol 2023; 14:1253169. [PMID: 38026928 PMCID: PMC10679416 DOI: 10.3389/fphar.2023.1253169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Natural killer (NK) cells are crucial components of the innate immune system that fight tumors and viral infections. Patients with colorectal cancer (CRC) have a poor prognosis, and immunotherapeutic tools play a key role in the treatment of CRC. Methods: Public data on CRC patients was collected from the TCGA and the GEO databases. Tissue data of CRC patients were collected from Guangxi Medical University Affiliated Cancer Hospital. An NK-related prognostic model was developed by the least absolute shrinkage and selection operator (LASSO) and Cox regression method. Validation data were collected from different clinical subgroups and an external independent validation cohort to verify the model's accuracy. In addition, multiple external independent immunotherapy datasets were collected to further examine the value of NK-related risk scores (NKRS) in the prediction of immunotherapy response. Potential biological functions of key genes were examined by methods of cell proliferation, apoptosis and Western blotting. Results: A novel prognostic model for CRC patients based on NK-related genes was developed and NKRS was generated. There was a significantly poorer prognosis among the high-NKRS group. Based on immune response prediction, patients with low NKRS may be more suitable for immunotherapy and they are more sensitive to immunotherapy. The proliferation rate of CRC cells was significantly reduced and apoptosis of CRC cells was increased after SLC2A3 was knocked down. SLC2A3 was also found to be associated with the TGF-β signaling pathway. Conclusion: NKRS has potential applications for predicting prognostic status and response to immunotherapy in CRC patients. SLC2A3 has potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Meiqin Li
- Department of Clinical Laboratory, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Jingqing Song
- Department of Gastrointestinal Surgery, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Lin Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qi Wang
- Department of Basic Medicine, Guangxi Health Science College, Nanning, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Dan Mo
- Department of Breast, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
18
|
Hu G, Lin C, Gao K, Chen M, Long F, Tian B. Exosomal circCOL1A1 promotes angiogenesis via recruiting EIF4A3 protein and activating Smad2/3 pathway in colorectal cancer. Mol Med 2023; 29:155. [PMID: 37940881 PMCID: PMC10633966 DOI: 10.1186/s10020-023-00747-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third frequently diagnosed cancer with high incidence and mortality rate worldwide. Our previous report has demonstrated that circCOL1A1 (hsa_circ_0044556) functions as an oncogene in CRC, and Gene Ontology (GO) analysis has also revealed the strong association between circCOL1A1 and angiogenesis. However, the mechanism of circCOL1A1 or exosomal circCOL1A1 in CRC angiogenesis remains elusive. METHODS Purified exosomes from CRC cells were characterized by nanoparticle tracking analyzing, electron microscopy and western blot. qRT-PCR, immunohistochemistry or western blot were employed to test the expression of circCOL1A1, EIF4A3, Smad pathway and angiogenic markers. Cell proliferation of HUVECs was monitored by CCK-8 assay. The migratory and angiogenic capabilities of HUVECs were detected by wound healing and tube formation assay, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down and FISH assays were used to detect the interactions among circCOL1A1, EIF4A3 and Smad2/3 mRNA. The in vitro findings were verified in xenograft model. RESULTS CRC cell-derived exosomal circCOL1A1 promoted angiogenesis of HUVECs via recruiting EIF4A3. EIF4A3 was elevated in CRC tissues, and it stimulated angiogenesis of HUVECs through directly binding and stabilizing Smad2/3 mRNA. Moreover, exosomal circCOL1A1 promoted angiogenesis via inducing Smad2/3 signaling pathway in vitro, and it also accelerated tumor growth and angiogenesis in vivo. CONCLUSION CRC cell-derived exosomal circCOL1A1 promoted angiogenesis via recruiting EIF4A3 and activating Smad2/3 signaling.
Collapse
Affiliation(s)
- Gui Hu
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China
| | - Kai Gao
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China
| | - Miao Chen
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China
| | - Fei Long
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China
| | - Buning Tian
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, P.R. China.
| |
Collapse
|
19
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
20
|
Feng ML, Sun MJ, Xu BY, Liu MY, Zhang HJ, Wu C. Mechanism of ELL-associated factor 2 and vasohibin 1 regulating invasion, migration, and angiogenesis in colorectal cancer. World J Gastroenterol 2023; 29:3770-3792. [PMID: 37426316 PMCID: PMC10324531 DOI: 10.3748/wjg.v29.i24.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1 (VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer (CRC). Knockdown of VASH1 enhanced transforming growth factor-β1 (TGF-β1)/Smad3 pathway activity and type I/III collagen production. Our previous findings suggest that ELL-associated factor 2 (EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3 (STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.
AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.
METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.
RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was up-regulated in advanced CRC tissue compared to normal colorectal tissue. Kaplan-Meier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.
CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cell-derived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.
Collapse
Affiliation(s)
- Ming-Liang Feng
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bo-Yang Xu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Meng-Yuan Liu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui-Jing Zhang
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Can Wu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
21
|
Shi Q, He Y, He S, Li J, Xia J, Chen T, Huo L, Ling Y, Liu Q, Zang W, Wang Q, Tang C, Wang X. RP11-296E3.2 acts as an important molecular chaperone for YBX1 and promotes colorectal cancer proliferation and metastasis by activating STAT3. J Transl Med 2023; 21:418. [PMID: 37370092 DOI: 10.1186/s12967-023-04267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND RP11-296E3.2 is a novel long noncoding RNA (lncRNA) associated with colorectal cancer (CRC) metastasis, that was reported in our previous clinical studies. However, the mechanisms of RP11-296E3.2 in colorectal tumorigenesis remain elusive. METHODS RNA sequencing (RNA-seq), Fluorescence in situ hybridization (FISH), Transwell assays and others, were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vitro. In situ and metastatic tumor models were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vivo. RNA-pulldown, RNA-interacting protein immunoprecipitation (RIP), tissue microarray (TMA) assay, a luciferase reporter assay, chromatin immunoprecipitation (ChIP) and others were performed to explore the mechanisms by which RP11-296E3.2 regulates CRC tumorigenesis. RESULTS RP11-296E3.2 was confirmed to be associated with CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, RP11-296E3.2 directly bound to recombinant Y-Box Binding Protein 1 (YBX1) and enhanced signal transducer and activator of transcription 3 (STAT3) transcription and phosphorylation. YBX1 promoted the CRC cell proliferation and migration, while knockdown of RP11-296E3.2 attenuated the effects of YBX1 on CRC cell proliferation, and metastasis and the expression of several related downstream genes. We are the first to discover and confirm the existence of the YBX1/STAT3 pathway, a pathway dependent on RP11-296E3.2. CONCLUSION Together, these novel findings show that the RP11-296E3.2/YBX1 pathway promotes colorectal tumorigenesis and progression by activating STAT3 transcription and phosphorylation, and suggest that RP11-296E3.2 is a potential diagnostic biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Qian Shi
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Shouyu He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Jingjing Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ji Xia
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tianwei Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lixia Huo
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Yuhang Ling
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Qinchen Liu
- Department of General Surgery, Shanghai Fengxian Central Hospital (Affiliated Fengxian Hospital to Southern Medical University), Shanghai, 201499, China
| | - Wei Zang
- Department of General Surgery, Shanghai Fengxian Central Hospital (Affiliated Fengxian Hospital to Southern Medical University), Shanghai, 201499, China
| | - Qiang Wang
- Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Chengwu Tang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China.
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
22
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|