1
|
Sharaf-Eldin WE, Rafat K, Issa MY, Elbendary HM, Eissa NR, Hawaary B, Gaboon NEA, Maroofian R, Gleeson JG, Essawi ML, Zaki MS. Clinical and Molecular Profiles of a Cohort of Egyptian Patients with Collagen VI-Related Dystrophy. J Mol Neurosci 2024; 74:93. [PMID: 39367186 PMCID: PMC11452470 DOI: 10.1007/s12031-024-02266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Collagen VI-related dystrophies (COL6-RD) display a wide spectrum of disease severity and genetic variability ranging from mild Bethlem myopathy (BM) to severe Ullrich congenital muscular dystrophy (UCMD) and the intermediate severities in between with dual modes of inheritance, dominant and recessive. In the current study, next-generation sequencing demonstrated potential variants in the genes coding for the three alpha chains of collagen VI (COL6A1, COL6A2, or COL6A3) in a cohort of Egyptian patients with progressive muscle weakness (n = 23). Based on the age of disease onset and the patient clinical course, subjects were diagnosed as follows: 12 with UCMD, 8 with BM, and 3 with intermediate disease form. Fourteen pathogenic variants, including 5 novel alterations, were reported in the enrolled subjects. They included 3 missense, 3 frameshift, and 6 splicing variants in 4, 3, and 6 families, respectively. In addition, a nonsense variant in a single family and an inframe variant in 3 different families were also detected. Recessive and dominant modes of inheritance were recorded in 9 and 8 families, respectively. According to ACMG guidelines, variants were classified as pathogenic (n = 7), likely pathogenic (n = 4), or VUS (n = 3) with significant pathogenic potential. To our knowledge, the study provided the first report of the clinical and genetic findings of a cohort of Egyptian patients with collagen VI deficiency. Inter- and intra-familial clinical variability was evident among the study cohort.
Collapse
Affiliation(s)
- Wessam E Sharaf-Eldin
- Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt
| | - Noura R Eissa
- Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Bahaa Hawaary
- Pediatrics Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Nagwa E A Gaboon
- Medical Genetics Centre, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Medical Genetics Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Reza Maroofian
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, La Jolla, CA, 92093, USA
| | - Mona L Essawi
- Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt.
- Medical Genetics Department, Armed Forces College of Medicine, Cairo, Egypt.
| |
Collapse
|
2
|
Buchignani B, Marinella G, Pasquariello R, Sgherri G, Frosini S, Santorelli FM, Orsini A, Battini R, Astrea G. KLHL40-Related Myopathy: A Systematic Review and Insight into a Follow-up Biomarker via a New Case Report. Genes (Basel) 2024; 15:208. [PMID: 38397198 PMCID: PMC10887776 DOI: 10.3390/genes15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in the KLHL40 gene are a common cause of severe or even lethal nemaline myopathy. Some cases with mild forms have been described, although the cases are still anecdotal. The aim of this paper was to systematically review the cases described in the literature and to describe a 12-year clinical and imaging follow-up in an Italian patient with KLHL40- related myopathy in order to suggest possible follow-up measurements. METHODS Having searched through three electronic databases (PubMed, Scopus, and EBSCO), 18 articles describing 65 patients with homozygous or compound heterozygous KLHL40 mutations were selected. A patient with a KLHL40 homozygous mutation (c.1582G>A/p.E528K) was added and clinical and genetic data were collected. RESULTS The most common mutation identified in our systematic review was the (c.1516A>C) followed by the (c.1582G>A). In our review, 60% percent of the patients died within the first 4 years of life. Clinical features were similar across the sample. Unfortunately, however, there is no record of the natural history data in the surviving patients. The 12-year follow-up of our patient revealed a slow improvement in her clinical course, identifying muscle MRI as the only possible marker of disease progression. CONCLUSIONS Due to its clinical and genotype homogeneity, KLHL40-related myopathy may be a condition that would greatly benefit from the development of new gene therapies; muscle MRI could be a good biomarker to monitor disease progression.
Collapse
Affiliation(s)
- Bianca Buchignani
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Gemma Marinella
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Rosa Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Giada Sgherri
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Silvia Frosini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | | | - Alessandro Orsini
- Pediatric Neurology, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy;
| | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Guja Astrea
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| |
Collapse
|
3
|
Wang K, Peng X, Zhang R, Wu X, Mao L. COL6A3 enhances the osteogenic differentiation potential of BMSCs by promoting mitophagy in the osteoporotic microenvironment. Mol Biol Rep 2024; 51:206. [PMID: 38270688 DOI: 10.1007/s11033-023-08918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| | - Lu Mao
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Oros M, Baranga L, Glangher A, Adina-Diana M, Jugulete G, Pavelescu C, Mihaltan F, Plaiasu V, Gheorghe DC. A Diagnostic Challenge in an Adolescent with Collagen VI-Related Myopathy and Emotional Disorder-Case Report. J Pers Med 2023; 13:1577. [PMID: 38003892 PMCID: PMC10672723 DOI: 10.3390/jpm13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Collagen VI-related disorders constitute a spectrum of severities from the milder Bethlem myopathy (BM) to the Ullrich congenital muscular dystrophy (UCMD), which is more severe, and an intermediate form characterized by muscle weakness that begins in infancy. Affected children are able to walk, although walking becomes increasingly difficult starting in early adulthood. They develop contractures in the ankles, elbows, knees, and spine in childhood. In some affected cases, the respiratory muscles are weakened, requiring mechanical ventilation, particularly during sleep. Individuals with collagen VI-related myopathy are at risk of restrictive lung disease and sleep-disordered breathing due to the development of scoliosis associated with neuromuscular weakness. Typical signs of respiratory failure are not always present, and some patients are unaware that their respiratory muscles have become weaker. Here, we report a case of an intermediate form of collagen VI-related myopathy confirmed by next-generation sequencing. The girl presented morning headache, irritability, and aggressiveness, and because of these main symptoms, she was referred by the neurologist for respiratory evaluation. The result of spirometry was associated with hypoventilation shown during sleep studies, indicating the necessity to initiate home non-invasive ventilation (NIV) with immediate improvement in the symptoms. Neuromuscular disorders (NMDs) have a great impact on sleep, but only very few studies evaluating sleep quality in young patients with collagen VI-related myopathy have been described. Daytime symptoms of sleep-disordered breathing may include irritability, emotional lability, and poor attentiveness, but these can be overseen by the severity of other complex medical problems in patients with collagen VI-related myopathy. We underline the importance of the close monitoring of respiratory function, sleep evaluation, and decision making to support the NIV treatment of other collagen VI-related myopathy variant-specific patients. Early recognition of sleep disturbances and initiation of respiratory support can preserve or enhance the quality of life for patients and their caregivers. Routine screening for identification of emotional distress should be instituted in the clinical practice using validated psychological measures in a multidisciplinary approach with different intervention strategies for both patient and parent when necessary.
Collapse
Affiliation(s)
- Mihaela Oros
- Ponderas Academic Hospital, No. 85A, Nicolae G. Caramfil Street, 014142 Bucharest, Romania; (M.O.); (L.B.); (A.G.)
- Physiology, Department of Preclinical Sciences, Faculty of Medicine, Titu Maiorescu University, No. 67A, Gheorghe Petrascu Street, 3rd District, 031593 Bucharest, Romania;
| | - Lucica Baranga
- Ponderas Academic Hospital, No. 85A, Nicolae G. Caramfil Street, 014142 Bucharest, Romania; (M.O.); (L.B.); (A.G.)
| | - Adelina Glangher
- Ponderas Academic Hospital, No. 85A, Nicolae G. Caramfil Street, 014142 Bucharest, Romania; (M.O.); (L.B.); (A.G.)
| | - Moldovan Adina-Diana
- Physiology, Department of Preclinical Sciences, Faculty of Medicine, Titu Maiorescu University, No. 67A, Gheorghe Petrascu Street, 3rd District, 031593 Bucharest, Romania;
- Medlife SA, 365 Grivitei Bvd, 010719 Bucharest, Romania
| | - Gheorghita Jugulete
- Faculty of Medicine and Pharmacy, “Carol Davila”, No. 37, Dionisie Lupu Street, 2nd District, 020021 Bucharest, Romania; (C.P.); (D.C.G.)
- “Matei Balş” National Institute for Infectious Diseases, No. 1, Calistrat Grozovici Street, 2nd District, 021105 Bucharest, Romania
| | - Carmen Pavelescu
- Faculty of Medicine and Pharmacy, “Carol Davila”, No. 37, Dionisie Lupu Street, 2nd District, 020021 Bucharest, Romania; (C.P.); (D.C.G.)
| | - Florin Mihaltan
- Faculty of Medicine and Pharmacy, “Carol Davila”, No. 37, Dionisie Lupu Street, 2nd District, 020021 Bucharest, Romania; (C.P.); (D.C.G.)
- National Institute of Pneumology Marius Nasta, 050159 Bucharest, Romania
| | - Vasilica Plaiasu
- Regional Center of Medical Genetics, INSMC Alessandrescu-Rusescu, 020395 Bucharest, Romania
| | - Dan Cristian Gheorghe
- Faculty of Medicine and Pharmacy, “Carol Davila”, No. 37, Dionisie Lupu Street, 2nd District, 020021 Bucharest, Romania; (C.P.); (D.C.G.)
- ENT Department “MS Curie” Hospital Bucharest, “Carol Davila” University of Medicine, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Marinella G, Orsini A, Scacciati M, Costa E, Santangelo A, Astrea G, Frosini S, Pasquariello R, Rubegni A, Sgherri G, Corsi M, Bonuccelli A, Battini R. Congenital Myopathy as a Phenotypic Expression of CACNA1S Gene Mutation: Case Report and Systematic Review of the Literature. Genes (Basel) 2023; 14:1363. [PMID: 37510268 PMCID: PMC10379235 DOI: 10.3390/genes14071363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.
Collapse
Affiliation(s)
- Gemma Marinella
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100 Pisa, Italy; (A.O.); (M.S.); (A.S.); (A.B.)
| | - Massimo Scacciati
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100 Pisa, Italy; (A.O.); (M.S.); (A.S.); (A.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Elisa Costa
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100 Pisa, Italy; (A.O.); (M.S.); (A.S.); (A.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Santangelo
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100 Pisa, Italy; (A.O.); (M.S.); (A.S.); (A.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Guja Astrea
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Silvia Frosini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Rosa Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Anna Rubegni
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Giada Sgherri
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
| | - Martina Corsi
- Department of Preventive and Occupational Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100 Pisa, Italy; (A.O.); (M.S.); (A.S.); (A.B.)
| | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (G.M.); (G.A.); (S.F.); (R.P.); (A.R.); (G.S.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|