1
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr Opin Microbiol 2024; 79:102473. [PMID: 38608623 PMCID: PMC11162901 DOI: 10.1016/j.mib.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
Collapse
Affiliation(s)
- Molly Elkins
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, Rajasthan, India
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
4
|
Laugisch O, Ruppert-Jungck MC, Auschill TM, Eick S, Sculean A, Heumann C, Timmermann L, Pedrosa DJ, Eggers C, Arweiler NB. Glucose-6-Phosphatase-Dehydrogenase activity as modulative association between Parkinson's disease and periodontitis. Front Cell Infect Microbiol 2024; 14:1298546. [PMID: 38404290 PMCID: PMC10885135 DOI: 10.3389/fcimb.2024.1298546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The association between periodontitis (PD) and Parkinson's disease (PK) is discussed due to the inflammatory component of neurodegenerative processes. PK severity and affected areas were determined using the following neuropsychological tests: Unified Parkinson's Disease Rating Score (UPDRS) and Hoehn and Yahr; non-motoric symptoms by Non-Motor Symptoms Scale (NMSS), and cognitive involvement by Mini-Mental State Examination (MMSE). Neuroinflammation and the resulting Glucose-6-Phosphatase-Dehydrogenase (G6PD) dysfunction are part of the pathophysiology of PK. This study aimed to evaluate these associations in periodontal inflammation. Clinical data and saliva-, serum-, and RNA-biobank samples of 50 well-characterized diametric patients with PK and five age- and sex-matched neurologically healthy participants were analyzed for G6PD function, periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Campylobacter rectus, Fusobacterium nucleatum, and Filifactor alocis), monocyte chemoattractant protein (MCP) 1, and interleukin (IL) 1-beta. Regression analysis was used to identify associations between clinical and behavioral data, and t-tests were used to compare health and disease. Compared with PK, no pathogens and lower inflammatory markers (p < 0.001) were detectible in healthy saliva and serum, PK-severity/UPDRS interrelated with the occurrence of Prevotella intermedia in serum as well as IL1-beta levels in serum and saliva (p = 0.006, 0.019, 0.034), Hoehn and Yahr correlated with Porphyromonas gingivalis, Prevotella intermedia, RNA IL1-beta regulation, serum, and saliva IL1-beta levels, with p-values of 0.038, 0.011, 0.008, <0.001, and 0.010, while MMSE was associated with Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, serum MCP 1 levels, RNA IL1-beta regulation and G6PD serum activity (p = 0.036, 0.003, 0.045, <0.001, and 0.021). Cognitive and motor skills seem to be important as representative tests are associated with periodontal pathogens and oral/general inflammation, wherein G6PD-saliva dysfunction might be involved. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00005388.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Marina C. Ruppert-Jungck
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christian Heumann
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - David J. Pedrosa
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| |
Collapse
|
5
|
Troci A, Philippen S, Rausch P, Rave J, Weyland G, Niemann K, Jessen K, Schmill LP, Aludin S, Franke A, Berg D, Bang C, Bartsch T. Disease- and stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease. PNAS NEXUS 2024; 3:pgad427. [PMID: 38205031 PMCID: PMC10776369 DOI: 10.1093/pnasnexus/pgad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Alba Troci
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Julius Rave
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gina Weyland
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Niemann
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Jessen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Lars-Patrick Schmill
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|