1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Eid S, Zhao W, Williams D, Nasser Z, Griffin J, Nagorny P, Schmitt-Ulms G. Update on a brain-penetrant cardiac glycoside that can lower cellular prion protein levels in human and guinea pig paradigms. PLoS One 2024; 19:e0308821. [PMID: 39316592 PMCID: PMC11421771 DOI: 10.1371/journal.pone.0308821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/31/2024] [Indexed: 09/26/2024] Open
Abstract
Lowering the levels of the cellular prion protein (PrPC) is widely considered a promising strategy for the treatment of prion diseases. Building on work that established immediate spatial proximity of PrPC and Na+, K+-ATPases (NKAs) in the brain, we recently showed that PrPC levels can be reduced by targeting NKAs with their natural cardiac glycoside (CG) inhibitors. We then introduced C4'-dehydro-oleandrin as a CG with improved pharmacological properties for this indication, showing that it reduced PrPC levels by 84% in immortalized human cells that had been differentiated to acquire neural or astrocytic characteristics. Here we report that our lead compound caused cell surface PrPC levels to drop also in other human cell models, even when the analyses of whole cell lysates suggested otherwise. Because mice are refractory to CGs, we explored guinea pigs as an alternative rodent model for the preclinical evaluation of C4'-dehydro-oleandrin. We found that guinea pig cell lines, primary cells, and brain slices were responsive to our lead compound, albeit it at 30-fold higher concentrations than human cells. Of potential significance for other PrPC lowering approaches, we observed that cells attempted to compensate for the loss of cell surface PrPC levels by increasing the expression of the prion gene, requiring daily administration of C4'-dehydro-oleandrin for a sustained PrPC lowering effect. Regrettably, when administered systemically in vivo, the levels of C4'-dehydro-oleandrin that reached the guinea pig brain remained insufficient for the PrPC lowering effect to manifest. A more suitable preclinical model is still needed to determine if C4'-dehydro-oleandrin can offer a cost-effective complementary strategy for pushing PrPC levels below a threshold required for long-term prion disease survival.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Nasser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Griffin
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Mohammad Ali FJ, Zare F, Sakhteman A, Bahadori S, Seradj H, Emami L. Molecular docking studies, DFT, and ADMET calculations of some flavonoids and their characteristic structural features involved in inhibition of pro-inflammatory enzymes. Nat Prod Res 2024:1-11. [PMID: 39049514 DOI: 10.1080/14786419.2024.2368748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024]
Abstract
Inflammation is an immune system response triggered by pathogens, damaged cells, or stimuli. Some regulatory enzymes, such as phosphodiesterase, hyaluronidase, collagenase, and lipoxygenase, play an essential role in the inflammatory process. Polyphenolic compounds, such as flavonoids, are active suppressors of inflammatory cytokines, modulators of transcription factors, and inflammation-related pathways. A set of flavonoid structures was screened and docked against inflammation pathway enzymes. Amentoflavone has been shown to cause interactions with phosphodiesterase enzymes, while Bilobetin and Silibinin demonstrated an increase in binding energy with collagenase enzymes. The retrieved compounds from the docking study were subjected to DFT theory. The results showed that the LUMO orbital is located on the flavonoid part. The thermochemical parameters indicated that Silibinin is more stable than other compounds. The ADMET profile predicted that Silibinin can be used orally among the compounds. Silibinin can be introduced as a promising anti-inflammatory agent demonstrating phosphodiesterase and collagenase inhibitory properties.
Collapse
Affiliation(s)
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Shahrzad Bahadori
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Rutkoski R, Debarba LK, Stilgenbauer L, Rosenthal T, Sadagurski M, Nagorny P. Selective (α)-l-Rhamnosylation and Neuroprotective Activity Exploration of Cardiotonic Steroids. ACS Med Chem Lett 2024; 15:280-286. [PMID: 38352829 PMCID: PMC10860192 DOI: 10.1021/acsmedchemlett.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
This work describes the studies on the direct C3-glycosylation of the C19-hydroxylated cardiotonic steroids strophanthidol, anhydro-ouabagenin, and ouabagenin using a strategy based on in situ protection of the C5 and C19 hydroxyl groups with boronic acids. While this strategy resulted in a successful one-pot C3-selective glycosylation of strophanthidol and anhydro-ouabegenin, it failed to provide ouabain from ouabagenin. The neuroprotective activity of the synthetic and natural glycosides against LPS-induced neuroinflammation was explored in neonatal mouse primary glia cells. Co-administration of natural and synthetic C3-glycosides at 200 nM concentrations resulted in the significant reduction of the LPS-induced neuroinflammatory markers IL-6, IL-1, TNFα, and IKBKE, with the anhydro-ouabagenin-3-(α)-l-rhamnoside (anhydro-ouabain) showing the most significant effect. At the same time, unglycosylated anhydro-ouabagenin enhanced rather than suppressed LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Ryan Rutkoski
- Department
of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucas Kniess Debarba
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Lukas Stilgenbauer
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Tay Rosenthal
- Small
Molecule Discovery & Development, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Marianna Sadagurski
- Department
of Biological Sciences, Institute of Environmental Health Sciences,
Integrative Biosciences Center, Wayne State
University, Detroit, Michigan 48202, United States
| | - Pavel Nagorny
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Sirirungruang S, Barnum CR, Tang SN, Shih PM. Plant glycosyltransferases for expanding bioactive glycoside diversity. Nat Prod Rep 2023. [PMID: 36853278 DOI: 10.1039/d2np00077f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Collin R Barnum
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Carney N, Perry N, Garabedian J, Nagorny P. Development of α-Selective Glycosylation with l-Oleandral and Its Application to the Total Synthesis of Oleandrin. Org Lett 2023; 25:966-971. [PMID: 36739571 DOI: 10.1021/acs.orglett.2c04358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This letter describes the development of an α-selective glycosylation using l-oleandrose, a 2-deoxysugar that is frequently found in natural products, and its application to the total synthesis of the natural cardiotonic steroids oleandrin and beaumontoside. To improve the reaction diastereoselectivity and to minimize side-product formation, an extensive evaluation and optimization of the conditions leading to α-selective glycosylation of digitoxigenin with l-oleandrose-based donors was conducted. These studies led to the exploration of 8 different phosphine·acid complexes or salts and yielded HBr·PPh3 as the optimal catalyst, which provided in the cleanest α-glycosylation and produced protected beaumontoside in 67% yield. Subsequent application of these conditions to synthetic oleandrigenin afforded the desired α-product in 69% isolated yield─enabling the completion of the first synthesis of oleandrin in 17 steps (1.2% yield) from testosterone.
Collapse
Affiliation(s)
- Nolan Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Natasha Perry
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob Garabedian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|