1
|
Lafnoune A, Chbel A, Darkaoui B, Wahnou H, Nait Irahal I. Invertebrate venoms: A treasure trove of bioactive compounds with anticancer potential. Arch Toxicol 2025:10.1007/s00204-025-04032-0. [PMID: 40316781 DOI: 10.1007/s00204-025-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/19/2025] [Indexed: 05/04/2025]
Abstract
Invertebrate venoms, despite their inherent toxicity, represent a promising source of bioactive compounds with significant anticancer properties. Historically, traditional medicines in Asia, Africa, and other regions have utilized these venoms to treat a variety of diseases, particularly those derived from scorpions, bees, wasps, and cone snails. Contemporary research has illuminated their therapeutic potential, especially in oncology. In vitro and in vivo studies demonstrate that specific toxins from these venoms can inhibit tumor cell proliferation, induce apoptosis, and restrict metastasis. The anticancer efficacy of invertebrate venoms is primarily attributed to their capacity to selectively target malignant cells while minimizing adverse effects on healthy tissues. In addition, bioactive compounds extracted from certain invertebrate venoms exhibit selective cytotoxicity against various cancer cell lines and can inhibit enzymes critical to tumor progression, thereby impeding the invasion and dissemination of cancerous cells. The increasing interest in the application of invertebrate venoms in cancer therapy has spurred further investigations into their therapeutic potential. This review critically evaluates recent scientific advancements concerning the anticancer properties of bioactive molecules derived from invertebrate venoms, elucidating their mechanisms of action and efficacy across different cancer types. We emphasize their potential as viable alternatives or adjuncts to conventional therapies, which are often constrained by their associated toxicity.
Collapse
Affiliation(s)
- Ayoub Lafnoune
- Laboratoire Santé, Environnement et biotechnologie, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco.
| | - Asmaa Chbel
- Laboratoire Santé, Environnement et biotechnologie, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Bouchra Darkaoui
- Laboratoire Santé, Environnement et biotechnologie, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Hicham Wahnou
- Laboratoire Immunologie et Biodiversité, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé, Environnement et biotechnologie, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
2
|
Mata de los Rios N, Gastelum-Arellanez A, Clement H, Álvarez-Cruz K, Romero-Terrazas D, Alvarado-González C, Hinojos-Gallardo LC, Corzo G, Espino-Solis GP. Ion-Channel-Targeting Scorpion Recombinant Toxin as Novel Therapeutic Agent for Breast Cancer. Toxins (Basel) 2025; 17:166. [PMID: 40278664 PMCID: PMC12030950 DOI: 10.3390/toxins17040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium (Kv) and sodium (Nav) channels have been implicated in oncogenic signaling pathways. Scorpion venom peptides, known for their selective ion-channel-blocking properties, have demonstrated promising antineoplastic activity. This study explores the potential therapeutic applications of bioactive fractions derived from Chihuahuanus coahuilae, in breast cancer cell lines. Through chromatographic separation, mass spectrometry, and functional assays, we assess their effects on cell viability, proliferation, and ion channel modulation. Our preliminary data suggest that these venom-derived peptides interfere with cancer cell homeostasis by altering ion fluxes, promoting apoptosis, and inhibiting metastatic traits. These findings support the therapeutic potential of ion-channel-targeting peptides as selective anticancer agents. Further investigations into their molecular mechanisms may pave the way for novel, targeted therapies with improved efficacy and specificity for breast cancer treatment.
Collapse
Affiliation(s)
- Natalia Mata de los Rios
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (N.M.d.l.R.); (K.Á.-C.)
| | - Argel Gastelum-Arellanez
- Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (A.G.-A.)
| | - Herlinda Clement
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico (G.C.)
| | - Karely Álvarez-Cruz
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (N.M.d.l.R.); (K.Á.-C.)
| | - Diana Romero-Terrazas
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (N.M.d.l.R.); (K.Á.-C.)
| | - Carolina Alvarado-González
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (N.M.d.l.R.); (K.Á.-C.)
| | - Luis Carlos Hinojos-Gallardo
- Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (A.G.-A.)
| | - Gerardo Corzo
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico (G.C.)
| | - Gerardo Pável Espino-Solis
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (N.M.d.l.R.); (K.Á.-C.)
- Laboratorio Nacional de Citometría de Flujo, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico
| |
Collapse
|
3
|
Elshobary ME, Badawy NK, Ashraf Y, Zatioun AA, Masriya HH, Ammar MM, Mohamed NA, Mourad S, Assy AM. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals (Basel) 2025; 18:402. [PMID: 40143178 PMCID: PMC11944582 DOI: 10.3390/ph18030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance-nodulation-division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health.
Collapse
Affiliation(s)
- Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Aquaculture Research, Alfred Wegener Institute (AWI)—Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Nadia K. Badawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Asmaa A. Zatioun
- Microbiology and Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22514, Egypt
| | - Hagar H. Masriya
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed M. Ammar
- Microbiology and Biochemistry Program, Faculty of Science, Benha University-Obour Campus, Benha 13518, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Abdelrahman M. Assy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Greenhough H, Waugh C, van Ginkel R, Bowater J, Kaur G, Oakly J, Plouviez M, Ingebrigtsen RA, Svenson J, Selwood AI. Mass cultivation of the dinoflagellate Alexandrium pacificum for gonyautoxin-1,4 production. Sci Rep 2025; 15:7430. [PMID: 40032889 PMCID: PMC11876455 DOI: 10.1038/s41598-025-91576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Bioactive venoms and toxins are emerging as a promising source of drug leads. Optimized through evolution, these compounds display remarkable selectivity and ligand affinity toward a range of relevant pharmacological targets. The successful development of new drugs from toxins is hampered in some areas by the chemical complexity of the active compounds, which limits the possibility of using chemical synthesis or recombinant strategies for drug lead generation. Marine paralytic shellfish toxins produced by marine microalgae is one such family of compounds. These compounds are highly potent blockers of voltage-gated ion channels, involved in regulating a range of physiological processes and thus versatile targets for drug development. To overcome the supply issue, the current paper describes the development of a scalable production method to generate gram amounts of gonyautoxin-1,4 by mass cultivation of the dinoflagellate Alexandrium pacificum in artificial seawater. By selecting a high-producing strain and running a series of growth optimization experiments, we have scaled up production from 100 mL to 1150 L, with cellular yields of toxin 30 times higher than in a natural bloom. This allows commercial production of gram amounts of these promising compounds, thereby enabling their use in a range of applications beyond the analytical scale.
Collapse
Affiliation(s)
| | - Craig Waugh
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand
| | - Roel van Ginkel
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand
| | - Joel Bowater
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand
| | - Gurmeet Kaur
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand
| | - Joy Oakly
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand
| | | | | | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand.
| | - Andrew I Selwood
- Cawthron Institute, 98 Halifax Street East, Nelson, New Zealand.
| |
Collapse
|
5
|
de Cena GL, Tada DB, Lucchi DB, Santos TA, Heras M, Juliano M, Torres Braconi C, Castanho MA, Lopes-Ferreira M, Conceição K. Design of Natterins-based peptides improves antimicrobial and antiviral activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00867. [PMID: 39758971 PMCID: PMC11697409 DOI: 10.1016/j.btre.2024.e00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
The biochemical analysis of animal venoms has been intensifying over the years, enabling the prediction of new molecules derived from toxins, harnessing the therapeutic potential of these molecules. From the venom of the fish Thalassophryne nattereri, using in silico methods for predicting antimicrobial and cell-penetrating peptides, two peptides from Natterins with promising characteristics were synthesized and subjected to in vitro and in vivo analysis. The peptides were subjected to stability tests and antimicrobial assays, cytotoxicity in murine fibroblast cells, antiviral assays against the Chikungunya virus, and the toxicity on G. mellonella was also evaluated. The findings underscore the peptides' robust stability under varying temperatures and pH conditions and resistance to proteolytic degradation. The peptides demonstrated significant antimicrobial efficacy, minimal cytotoxicity, and low hemolytic activity. Although their antiviral efficacy was limited, they showed potential at specific stages of viral replication. The in vivo toxicity tests indicated a favorable safety profile. These findings suggest that this approach can aid in the development of antimicrobial agents, offering a faster and personalized method to combat microbial infections, and represent a promising discovery in venom biotechnology research.
Collapse
Affiliation(s)
- Gabrielle L. de Cena
- Laboratory of Peptide Biochemistry, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Dayane B. Tada
- Laboratory of Nanomaterials and Nanotoxicology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Danilo B.M. Lucchi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Tiago A.A. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Montserrat Heras
- Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | - Maria Juliano
- Department of Biophysics, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Miguel A.R.B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mônica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil
| | - Katia Conceição
- Laboratory of Peptide Biochemistry, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
6
|
da Silva JR, Castro-Amorim J, Mukherjee AK, Ramos MJ, Fernandes PA. The application of snake venom in anticancer drug discovery: an overview of the latest developments. Expert Opin Drug Discov 2025:1-19. [PMID: 40012249 DOI: 10.1080/17460441.2025.2465364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Snake venom is a rich source of toxins with great potential for therapeutic applications. In addition to its efficacy in treating hypertension, acute coronary syndrome, and other heart conditions, research has shown that this potent enzymatic cocktail is capable of selectively targeting and destroying cancer cells in many cases while sparing healthy cells. AREAS COVERED The authors begin by acknowledging the emerging trends in snake-derived targeted therapies in battling cancer. An extensive literature review examining the effects of various snake venom toxins on cancer cell lines, highlighting the specific cancer hallmarks each toxin targets is presented. Furthermore, the authors emphasize the emerging potential of artificial intelligence in accelerating snake venom-based drug discovery for cancer treatment, showcasing several innovative software applications in this field. EXPERT OPINION Research on snake venom toxins indicates promising potential for cancer treatment as many of the discussed toxins can specifically target cancer cells. Nevertheless, variations in the composition of venoms, ethical issues, and delivery barriers limit their development into effective therapies. Thus, advances in biotechnology, molecular engineering, in silico methods are crucial for the refinement of venom-derived compounds, improving their specificity, and overcoming these challenges, ultimately enhancing their therapeutic potential in cancer therapy.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ashis K Mukherjee
- Vigyan Path Garchuk, Paschim Boragaon institution, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
El-Arabey AA, Ghramh HA. Bee venom: Yesterday's enemy becomes modern medicine for skin cancer. Exp Cell Res 2025; 445:114435. [PMID: 39923827 DOI: 10.1016/j.yexcr.2025.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Malignant melanoma is one of the most lethal human malignancies, particularly when it spreads from its initial site in the skin to distant locations with few therapeutic options. While a range of treatment approaches exist, such as chemotherapy, radiation, immunotherapy, and targeted therapy, they typically fail to treat skin cancer, particularly in its late stages. The complex cellular and molecular mechanisms that drive melanoma growth and metastatic dissemination are both varied and complicated, posing significant challenges to the development of effective treatment approaches. As the incidence and burden of this malignancy increase, there is an urgent need for innovative therapeutic techniques. Therefore, it is vital to research alternate therapy options. Several research undertaken in recent years have found that bee venom influences a variety of cancers. The more research into using bee venom to cure skin cancer, the less attention it receives. In this context, the purpose of this proposal is to review a comprehensive assessment of the clinical impact of bee venom against skin cancer, as well as to highlight challenges and excitement down the road.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hamed A Ghramh
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
8
|
Oh JW, Shin MK, Park HR, Kim S, Lee B, Yoo JS, Chi WJ, Sung JS. PA-Win2: In Silico-Based Discovery of a Novel Peptide with Dual Antibacterial and Anti-Biofilm Activity. Antibiotics (Basel) 2024; 13:1113. [PMID: 39766503 PMCID: PMC11672609 DOI: 10.3390/antibiotics13121113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence and prevalence of antibiotic-resistant bacteria (ARBs) have become a serious global threat, as the morbidity and mortality associated with ARB infections are continuously rising. The activation of quorum sensing (QS) genes can promote biofilm formation, which contributes to the acquisition of drug resistance and increases virulence. Therefore, there is an urgent need to develop new antimicrobial agents to control ARB and prevent further development. Antimicrobial peptides (AMPs) are naturally occurring defense molecules in organisms known to suppress pathogens through a broad range of antimicrobial mechanisms. Methods: In this study, we utilized a previously developed deep-learning model to identify AMP candidates from the venom gland transcriptome of the spider Pardosa astrigera, followed by experimental validation. Results: PA-Win2 was among the top-scoring predicted peptides and was selected based on physiochemical features. Subsequent experimental validation demonstrated that PA-Win2 inhibits the growth of Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and multidrug-resistant P. aeruginosa (MRPA) strain CCARM 2095. The peptide exhibited strong bactericidal activity against P. aeruginosa, and MRPA CCARM 2095 through the depolarization of bacterial cytoplasmic membranes and alteration of gene expression associated with bacterial survival. In addition, PA-Win2 effectively inhibited biofilm formation and degraded pre-formed biofilms of P. aeruginosa. The gene expression study showed that the peptide treatment led to the downregulation of QS genes in the Las, Pqs, and Rhl systems. Conclusions: These findings suggest PA-Win2 as a promising drug candidate against ARB and demonstrate the potential of in silico methods in discovering functional peptides from biological data.
Collapse
Affiliation(s)
- Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Sejun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Byungjo Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Jung Sun Yoo
- Wildlife Quarantine Center, National Institute of Wildlife Disease Control and Prevention, Incheon 22382, Republic of Korea;
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| |
Collapse
|
9
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
10
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
11
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
12
|
Boaro A, Ageitos L, Torres MDT, Blasco EB, Oztekin S, de la Fuente-Nunez C. Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101459. [PMID: 38239869 PMCID: PMC10795512 DOI: 10.1016/j.xcrp.2023.101459] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Antimicrobial peptides (AMPs) derived from natural toxins and venoms offer a promising alternative source of antibiotics. Here, through structure-function-guided design, we convert two natural AMPs derived from the venom of the solitary eumenine wasp Eumenes micado into α-helical AMPs with reduced toxicity that kill Gram-negative bacteria in vitro and in a preclinical mouse model. To identify the sequence determinants conferring antimicrobial activity, an alanine scan screen and strategic single lysine substitutions are made to the amino acid sequence of these natural peptides. These efforts yield a total of 34 synthetic derivatives, including alanine substituted and lysine-substituted sequences with stabilized α-helical structures and increased net positive charge. The resulting lead synthetic peptides kill the Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa (PAO1 and PA14) by rapidly permeabilizing both their outer and cytoplasmic membranes, exhibit anti-infective efficacy in a mouse model by reducing bacterial loads by up to three orders of magnitude, and do not readily select for bacterial resistance.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
- These authors contributed equally
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15008 A Coruña, Spain
- These authors contributed equally
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esther Broset Blasco
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebahat Oztekin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead contact
| |
Collapse
|
13
|
Chi QN, Jia SX, Yin H, Wang LE, Fu XY, Ma YN, Sun MP, Qi YK, Li Z, Du SS. Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability. Bioorg Chem 2023; 134:106451. [PMID: 36907048 DOI: 10.1016/j.bioorg.2023.106451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Cytotoxic peptides derived from spider venoms have been considered as promising candidates for anticancer treatment. The novel cell penetrating peptide LVTX-8, which is a 25-residue amphipathic α-helical peptide isolated from spider Lycosa vittata, exhibited potent cytotoxicity and is a potential precursor for further anticancer drug development. Nevertheless, LVTX-8 may be easily degraded by multiple proteases, inducing the proteolytic stability problem and short half-life. In this study, ten LVTX-8-based analogs were rationally designed and the efficient manual synthetic method was established by the DIC/Oxyma based condensation system. The cytotoxicity of synthetic peptides was systematically evaluated against seven cancer cell lines. Seven of the derived peptides exhibited high cytotoxicity towards tested cancer in vitro, which was better than or comparable to that of natural LVTX-8. In particular, both N-acetyl and C-hydrazide modified LVTX-8 (825) and the conjugate methotrexate (MTX)-GFLG-LVTX-8 (827) possessed more durable anticancer efficiency, higher proteolytic stability, as well as lower hemolysis. Finally, we confirmed that LVTX-8 could disrupt the integrity of cell membrane, target the mitochondria and reduce the mitochondrial membrane potential to induce the cell death. Taken together, the structural modifications were conducted on LVTX-8 for the first time and the stability significantly improved derivatives 825 and 827 may provide useful references for the modifications of cytotoxic peptides.
Collapse
Affiliation(s)
- Qiao-Na Chi
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Xi Jia
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Yin
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Li-E Wang
- Department of Assisted Reproduction, Reproductive Center, Qingdao Women and Children's Hospital, Qingdao 266004, China
| | - Xing-Yan Fu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yan-Nan Ma
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Ming-Pu Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
14
|
Yang N, Aminov R, Franco OL, de la Fuente-Nunez C, Wang J. Editorial: Community series in antimicrobial peptides: Molecular design, structure function relationship and biosynthesis optimization. Front Microbiol 2023; 14:1125426. [PMID: 36726373 PMCID: PMC9885265 DOI: 10.3389/fmicb.2023.1125426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Affiliation(s)
- Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|