1
|
Yang S, Chen B, Zhang J, Zhou X, Jiang Y, Tong W, Chen J, Luo N. Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway. Mol Biol Rep 2025; 52:213. [PMID: 39921763 PMCID: PMC11807073 DOI: 10.1007/s11033-025-10311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Neuroinflammation and abnormal energy metabolism have been shown to significantly contribute to the progression of Alzheimer's disease (AD). Adenylate kinase 5 (AK5), an enzyme predominantly expressed in the brain regulates ATP metabolism, has an unclear role in energy metabolism and neuroinflammation in AD. METHODS The AD datasets were derived from the GEO public database to analyze the expression levels of AK5 in AD and normal samples and to assess the relationship between AK5 expression and the clinical characteristics of AD patients. Functional enrichment analysis was employed to investigate the effects of changes in AK5 expression on energy metabolism and immunoinflammation in AD, as well as the underlying mechanisms. Moreover, the influence of AK5 expression variations on oligodendrocyte development was assessed, and the predicted outcomes were validated through cellular experiments. RESULTS Bioinformatic analysis revealed that AK5 was lowly expressed in AD olfactory lobe tissues, accompanied by increased immunoinflammation and apoptosis. Increased expression of AK5 was associated with the activation of AMPK signaling, enhanced oxidative phosphorylation, and overall stimulation of energy metabolism. In oligodendrocytes treated with Aβ1-42, overexpression of AK5 resulted in elevated levels of P-AMPK, SIRT1, and BCL-2 proteins, while reducing the levels of BAX, CASPASE-3, and NF-κB proteins. This modulation activated AMPK signaling, thereby inhibiting neuroinflammation and apoptosis. In contrast, low levels of AK5 expression during early differentiation triggered inflammatory responses and increased apoptosis in oligodendrocytes. CONCLUSION AK5 inhibits AD oligodendrocyte apoptosis by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiyun Yang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Bolun Chen
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiatong Zhang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinmei Zhou
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuanjing Jiang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Yang X, Ju X, Wang H, Mi X, Shi B. Controlling iron release and pathogenic bacterial growth in distribution pipes through nanofiltration followed by different disinfection methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136341. [PMID: 39492144 DOI: 10.1016/j.jhazmat.2024.136341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
There is increasing concern about discoloration problems and microbial risks in drinking water. Until recently, how to control iron release and pathogenic bacterial growth in distribution pipes has been a knowledge gap. In our study, nanofiltration removed 13.3 % of lignins, 33.1 % of tannins and 17.7 % of proteins from dissolved organic matter (DOM). These DOM components were closely related to enzymes involved in the tricarboxylic acid (TCA) cycle. Therefore, nanofiltration followed by chlorine or chloramine disinfection inhibited the TCA cycle and induced lower adenosine triphosphate (ATP) and extracellular polymeric substance (EPS) production, resulting in reduced pathogenic bacterial growth. The number of Pseudomonas aeruginosa decreased to 7.43 × 105 and 2.43 × 105 gene copies/mL, respectively. Moreover, lower DOM concentrations increased the abundance of iron-reducing bacteria (IRBs) in the biofilm. IRBs can convert Fe(III) into Fe(II) through cellular c-type cytochromes, including CymA, MtrA, Cytc3, MacA, PpcA, and OcmB. The higher abundance of IRB and their cytochromes led to more Fe3O4 formation on the surface of the distribution pipes, resulting in lower iron release. The total iron concentration was 16.9 μg/L in the effluent of pipes treated with nanofiltration and chloramine disinfection. Therefore, nanofiltration followed by different disinfection methods, especially chloramine disinfection, effectively controlled iron release and pathogenic bacterial growth in distribution pipes. This study strongly contributes to maintaining the drinking water quality in distribution pipes.
Collapse
Affiliation(s)
- Xinyuan Yang
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiurong Ju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiao Mi
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Assis V, Andrade RVD, de Sousa Neto IV, Barin FR, Ramos GV, Franco OL, Nobrega O, Mesquita-Ferrari RA, Malavazzi TCDS, Dos Santos Rosa T, de Luca Corrêa H, Petriz B, Durigan JLQ, de Cassia Marqueti R. Adaptive responses of skeletal muscle to calcaneal tendon partial injury in rats: insights into remodeling and plasticity. Mol Biol Rep 2024; 51:1078. [PMID: 39432127 DOI: 10.1007/s11033-024-09992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Skeletal muscle is a highly adaptive tissue, capable of responding to different physiological and functional demands, even in situations that may cause instability. OBJECTIVES To evaluate how partial calcaneal tendon (CT) injuries affect the remodeling and plasticity of the gastrocnemius muscle over time. METHODS AND RESULTS The study was carried out with Wistar rats randomly divided into five groups. The control group comprised animals not subjected to partial CT damage. The remaining four groups were subjected to partial CT damage and were further categorized based on the time of euthanasia: 3, 14, 28, and 55 days after injury. The gastrocnemius muscle was collected and used for gene expression analysis, zymography, flow cytometry, and morphology. The calcaneal tendon was analyzed only to verify the presence of the partial injury. RESULTS The impact of partial CT injury on the gastrocnemius homeostasis, particularly on gene expression, was more pronounced in the 3-day group compared to the other groups, especially the control group. Cytokine profile and morphologic alterations occurred in the 55 days group when compared to the other groups. CONCLUSIONS The data reported here suggest that partial injury can negatively affect intracellular signaling and degradation pathways, disturbing the muscular extracellular matrix regulatory mechanisms and communication with the tendon. However, skeletal muscle seems to mitigate these harmful effects in comparison with lesions that affect muscle and tendon.
Collapse
Affiliation(s)
- Victoria Assis
- Graduate Program in Rehabilitation Sciences, Laboratory of Molecular Analysis, Faculdade de Ceilândia, Universidade de Brasília, Campus Universitário, Centro Metropolitano 1, Conjunto A, Brasília, 72220-900, Brazil.
| | | | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Gracielle Vieira Ramos
- IPE/HOME - Institute for Research and Teaching of the Orthopaedic Hospital and Specialty Medicine - HOME / FIFA Medical Centre of Excellence, Physiotherapy Department, Universidade Paulista, Brasília, Brazil
- Institute of Health Sciences, Universidade Paulista, São Paulo, Brazil
| | - Octávio Luiz Franco
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Otavio Nobrega
- Faculty of Health Sciences, Universidade de Brasília, Brasília, Brazil
- Graduate Program of Medical Sciences, Universidade de Brasília, Brasília, Brazil
| | | | | | - Thiago Dos Santos Rosa
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
- Graduate Program of Physical Education, Universidade Católica de Brasília, Brasilia, Brazil
| | - Hugo de Luca Corrêa
- Graduate Program of Physical Education, Universidade Católica de Brasília, Brasilia, Brazil
| | - Bernando Petriz
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
| | - João Luiz Quaglioti Durigan
- Graduate Program in Rehabilitation Sciences, Laboratory of Molecular Analysis, Faculdade de Ceilândia, Universidade de Brasília, Campus Universitário, Centro Metropolitano 1, Conjunto A, Brasília, 72220-900, Brazil
| | - Rita de Cassia Marqueti
- Graduate Program in Rehabilitation Sciences, Laboratory of Molecular Analysis, Faculdade de Ceilândia, Universidade de Brasília, Campus Universitário, Centro Metropolitano 1, Conjunto A, Brasília, 72220-900, Brazil.
| |
Collapse
|
4
|
Wu W, Guo X, Qu T, Huang Y, Tao J, He J, Wang X, Luo J, An P, Zhu Y, Sun Y, Luo Y. The Combination of Lactoferrin and Creatine Ameliorates Muscle Decay in a Sarcopenia Murine Model. Nutrients 2024; 16:1958. [PMID: 38931310 PMCID: PMC11207062 DOI: 10.3390/nu16121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related condition characterized by progressive loss of muscle mass, strength, and function. The occurrence of sarcopenia has a huge impact on physical, psychological, and social health. Therefore, the prevention and treatment of sarcopenia is becoming an important public health issue. METHOD 35 six-week-old male C57BL/6 mice were randomly divided into five groups, one of which served as a control group, while the rest of the groups were constructed as a model of sarcopenia by intraperitoneal injection of D-galactose. The intervention with lactoferrin, creatine, and their mixtures, respectively, was carried out through gavage for 8 weeks. Muscle function was assessed based on their endurance, hanging time, and grip strength. The muscle tissues were weighed to assess the changes in mass, and the muscle RNA was extracted for myogenic factor expression and transcriptome sequencing to speculate on the potential mechanism of action by GO and KEGG enrichment analysis. RESULT The muscle mass (lean mass, GAS index), and muscle function (endurance, hanging time, and grip strength) decreased, and the size and structure of myofiber was smaller in the model group compared to the control group. The intervention with lactoferrin and creatine, either alone or combination, improved muscle mass and function, restored muscle tissue, and increased the expression of myogenic regulators. The combined group demonstrated the most significant improvement in these indexes. The RNA-seq results revealed enrichment in the longevity-regulated pathway, MAPK pathway, focal adhesion, and ECM-receptor interaction pathway in the intervention group. The intervention group may influence muscle function by affecting the proliferation, differentiation, senescence of skeletal muscle cell, and contraction of muscle fiber. The combined group also enriched the mTOR-S6K/4E-BPs signaling pathway, PI3K-Akt signaling pathway, and energy metabolism-related pathways, including Apelin signaling, insulin resistance pathway, and adipocytokine signaling pathway, which affect energy metabolism in muscle. CONCLUSIONS Lactoferrin and creatine, either alone or in combination, were found to inhibit the progression of sarcopenia by influencing the number and cross-sectional area of muscle fibers and muscle protein synthesis. The combined intervention appears to exert a more significant effect on energy metabolism.
Collapse
Affiliation(s)
- Wenbin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Xinlu Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yuejia Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jin Tao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| |
Collapse
|
5
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
6
|
Reed CH, Tystahl AC, Eo H, Buhr TJ, Bauer EE, Lee JH, Clark PJ, Valentine RJ. The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules 2024; 14:527. [PMID: 38785934 PMCID: PMC11118922 DOI: 10.3390/biom14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.
Collapse
Affiliation(s)
- Carter H Reed
- Department of Biology, Grand View University, Des Moines, IA 50316, USA;
| | - Anna C. Tystahl
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Trevor J. Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ella E. Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ji Heun Lee
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Rudy J. Valentine
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
7
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
8
|
Luo Y, Liu D, Wang Y, Zhang F, Xu Y, Pu Q, Zhao L, Wei T, Fan T, Lou Y, Liu S. Combined analysis of the proteome and metabolome provides insight into microRNA-1174 function in Aedes aegypti mosquitoes. Parasit Vectors 2023; 16:271. [PMID: 37559132 PMCID: PMC10413549 DOI: 10.1186/s13071-023-05859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Pathogenic viruses can be transmitted by female Aedes aegypti (Ae. aegypti) mosquitoes during blood-meal acquisition from vertebrates. Silencing of mosquito- and midgut-specific microRNA (miRNA) 1174 (miR-1174) impairs blood intake and increases mortality. Determining the identity of the proteins and metabolites that respond to miR-1174 depletion will increase our understanding of the molecular mechanisms of this miRNA in controlling blood-feeding and nutrient metabolism of mosquitoes. METHODS Antisense oligonucleotides (antagomirs [Ant]) Ant-1174 and Ant-Ct were injected into female Ae. aegypti mosquitoes at 12-20 h posteclosion, and depletion of miR-1174 was confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Ant-1174-injected and control mosquitoes were collected before the blood meal at 72 h post-injection for tandem mass tag-based proteomic analysis and liquid chromatography-tandom mass spectrometry non-target metabolomic analysis to identify differentially expressed proteins and metabolites, respectively. RNA interference (RNAi) using double-stranded RNA (dsRNA) injection was applied to investigate the biological roles of these differentially expressed genes. The RNAi effect was verified by RT-qPCR and western blotting assays. Triglyceride content and ATP levels were measured using the appropriate assay kits, following the manufacturers' instructions. Statistical analyses were conducted with GraphPad7 software using the Student's t-test. RESULTS Upon depletion of mosquito- and midgut-specific miR-1174, a total of 383 differentially expressed proteins (DEPs) were identified, among which 258 were upregulated and 125 were downregulated. Functional analysis of these DEPs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested that miR-1174 plays important regulatory roles in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and sugar metabolism pathways. A total of 292 differential metabolites were identified, of which 141 were upregulated and 151 were downregulated. Integrative analysis showed that the associated differential proteins and metabolites were mainly enriched in a variety of metabolic pathways, including glycolysis, citrate cycle, oxidative phosphorylation and amino acid metabolism. Specifically, the gene of one upregulated protein in miR-1174-depleted mosquitoes, purine nucleoside phosphorylase (PNP; AAEL002269), was associated with the purine, pyrimidine and niacin-nicotinamide metabolism pathways. PNP knockdown seriously inhibited blood digestion and ovary development and increased adult mortality. Mechanically, PNP depletion led to a significant downregulation of the vitellogenin gene (Vg); in addition, some important genes in the ecdysone signaling and insulin-like peptide signaling pathways related to ovary development were affected. CONCLUSIONS This study demonstrates differential accumulation of proteins and metabolites in miR-1174-depleted Ae. aegypti mosquitoes using proteomic and metabolomic techniques. The results provide functional evidence for the role of the upregulated gene PNP in gut physiological activities. Our findings highlight key molecular changes in miR-1174-depleted Ae. aegypti mosquitoes and thus provide a basis and novel insights for increased understanding of the molecular mechanism involved in a lineage-specific miRNA in mosquito vectors.
Collapse
Affiliation(s)
- Yangrui Luo
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Dun Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuanmei Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yuqi Lou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
9
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Myostatin: a potential therapeutic target for metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1181913. [PMID: 37288303 PMCID: PMC10242177 DOI: 10.3389/fendo.2023.1181913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder, its main clinical manifestations are obesity, hyperglycemia, hypertension and hyperlipidemia. Although metabolic syndrome has been the focus of research in recent decades, it has been proposed that the occurrence and development of metabolic syndrome is related to pathophysiological processes such as insulin resistance, adipose tissue dysfunction and chronic inflammation, but there is still a lack of favorable clinical prevention and treatment measures for metabolic syndrome. Multiple studies have shown that myostatin (MSTN), a member of the TGF-β family, is involved in the development and development of obesity, hyperlipidemia, diabetes, and hypertension (clinical manifestations of metabolic syndrome), and thus may be a potential therapeutic target for metabolic syndrome. In this review, we describe the transcriptional regulation and receptor binding pathway of MSTN, then introduce the role of MSTN in regulating mitochondrial function and autophagy, review the research progress of MSTN in metabolic syndrome. Finally summarize some MSTN inhibitors under clinical trial and proposed the use of MSTN inhibitor as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
10
|
Livelo C, Guo Y, Abou Daya F, Rajasekaran V, Varshney S, Le HD, Barnes S, Panda S, Melkani GC. Time-restricted feeding promotes muscle function through purine cycle and AMPK signaling in Drosophila obesity models. Nat Commun 2023; 14:949. [PMID: 36810287 PMCID: PMC9944249 DOI: 10.1038/s41467-023-36474-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Obesity caused by genetic and environmental factors can lead to compromised skeletal muscle function. Time-restricted feeding (TRF) has been shown to prevent muscle function decline from obesogenic challenges; however, its mechanism remains unclear. Here we demonstrate that TRF upregulates genes involved in glycine production (Sardh and CG5955) and utilization (Gnmt), while Dgat2, involved in triglyceride synthesis is downregulated in Drosophila models of diet- and genetic-induced obesity. Muscle-specific knockdown of Gnmt, Sardh, and CG5955 lead to muscle dysfunction, ectopic lipid accumulation, and loss of TRF-mediated benefits, while knockdown of Dgat2 retains muscle function during aging and reduces ectopic lipid accumulation. Further analyses demonstrate that TRF upregulates the purine cycle in a diet-induced obesity model and AMPK signaling-associated pathways in a genetic-induced obesity model. Overall, our data suggest that TRF improves muscle function through modulations of common and distinct pathways under different obesogenic challenges and provides potential targets for obesity treatments.
Collapse
Affiliation(s)
- Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|