1
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
2
|
Li X, Peng C, Liu H, Dong M, Li S, Liang W, Li X, Bai J. Constructing methylation-driven ceRNA networks unveil tumor heterogeneity and predict patient prognosis. Hum Mol Genet 2024:ddae176. [PMID: 39603659 DOI: 10.1093/hmg/ddae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cancer development involves a complex interplay between genetic and epigenetic factors, with emerging evidence highlighting the pivotal role of competitive endogenous RNA (ceRNA) networks in regulating gene expression. However, the influence of ceRNA networks by aberrant DNA methylation remains incompletely understood. In our study, we proposed DMceNet, a computational method to characterize the effects of DNA methylation on ceRNA regulatory mechanisms and apply it across eight prevalent cancers. By integrating methylation and transcriptomic data, we constructed methylation-driven ceRNA networks and identified a dominant role of lncRNAs within these networks in two key ways: (i) 17 cancer-shared differential methylation lncRNAs (DMlncs), including PVT1 and CASC2, form a Common Cancer Network (CCN) affecting key pathways such as the G2/M checkpoint, and (ii) 24 cancer-specific DMlncs construct unique ceRNA networks for each cancer type. For instance, in LUAD and STAD, hypomethylation drives DMlncs like PCAT6 and MINCR, disrupting the Wnt signaling pathway and apoptosis. We further investigated the characteristics of these methylation-driven ceRNA networks at the cellular level, revealing how methylation-driven dysregulation varies across distinct cell populations within the tumor microenvironment. Our findings also demonstrate the prognostic potential of cancer-specific ceRNA relationships, highlighting their relevance in predicting patient survival outcomes. This integrated transcriptomic and epigenomic analysis provides new insights into cancer biology and regulatory mechanisms.
Collapse
Affiliation(s)
- Xinyu Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Chuo Peng
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Hongyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Mingjie Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Shujuan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Weixin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
- Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
- Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China
| |
Collapse
|
3
|
Liu X, Xie X, Sui C, Liu X, Song M, Luo Q, Zhan P, Feng J, Liu J. Unraveling the cross-talk between N6-methyladenosine modification and non-coding RNAs in breast cancer: Mechanisms and clinical implications. Int J Cancer 2024; 154:1877-1889. [PMID: 38429857 DOI: 10.1002/ijc.34900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
In recent years, breast cancer (BC) has surpassed lung cancer as the most common malignant tumor worldwide and remains the leading cause of cancer death in women. The etiology of BC usually involves dysregulation of epigenetic mechanisms and aberrant expression of certain non-coding RNAs (ncRNAs). N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, widely exists in ncRNAs to affect its biosynthesis and function, and is an important regulator of tumor-related signaling pathways. Interestingly, ncRNAs can also regulate or target m6A modification, playing a key role in cancer progression. However, the m6A-ncRNAs regulatory network in BC has not been fully elucidated, especially the regulation of m6A modification by ncRNAs. Therefore, in this review, we comprehensively summarize the interaction mechanisms and biological significance of m6A modifications and ncRNAs in BC. Meanwhile, we also focused on the clinical application value of m6A modification in BC diagnosis and prognosis, intending to explore new biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuelong Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Chentao Sui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Yuan T, Liu H, Abudoukadier M, Yang Z, Zhou Z, Cui Y. YTHDF2-Mediated m6A methylation inhibition by miR27a as a protective mechanism against hormonal osteonecrosis in BMSCs. BMC Musculoskelet Disord 2024; 25:359. [PMID: 38711079 PMCID: PMC11071322 DOI: 10.1186/s12891-024-07481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.
Collapse
Affiliation(s)
- Tianyi Yuan
- The Fifth Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Hongjiang Liu
- The Fifth Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Maimaitiyibubaji Abudoukadier
- The Fifth Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Zengqiang Yang
- The Fifth Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Zhiheng Zhou
- The Fifth Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Yong Cui
- Department of Orthopedic Center, The Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China.
| |
Collapse
|
5
|
Bendek MF, Fitzpatrick C, Jeldes E, Boland A, Deleuze JF, Farfán N, Villegas J, Nardocci G, Montecino M, Burzio LO, Burzio VA. Inverse Modulation of Aurora Kinase A and Topoisomerase IIα in Normal and Tumor Breast Cells upon Knockdown of Mitochondrial ASncmtRNA. Noncoding RNA 2023; 9:59. [PMID: 37888205 PMCID: PMC10609868 DOI: 10.3390/ncrna9050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is currently the most diagnosed form of cancer and the leading cause of death by cancer among females worldwide. We described the family of long non-coding mitochondrial RNAs (ncmtRNAs), comprised of sense (SncmtRNA) and antisense (ASncmtRNA) members. Knockdown of ASncmtRNAs using antisense oligonucleotides (ASOs) induces proliferative arrest and apoptotic death of tumor cells, but not normal cells, from various tissue origins. In order to study the mechanisms underlying this selectivity, in this study we performed RNAseq in MDA-MB-231 breast cancer cells transfected with ASncmtRNA-specific ASO or control-ASO, or left untransfected. Bioinformatic analysis yielded several differentially expressed cell-cycle-related genes, from which we selected Aurora kinase A (AURKA) and topoisomerase IIα (TOP2A) for RT-qPCR and western blot validation in MDA-MB-231 and MCF7 breast cancer cells, as well as normal breast epithelial cells (HMEC). We observed no clear differences regarding mRNA levels but both proteins were downregulated in tumor cells and upregulated in normal cells. Since these proteins play a role in genomic integrity, this inverse effect of ASncmtRNA knockdown could account for tumor cell downfall whilst protecting normal cells, suggesting this approach could be used for genomic protection under cancer treatment regimens or other scenarios.
Collapse
Affiliation(s)
- Maximiliano F. Bendek
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
| | - Christopher Fitzpatrick
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Unit of Molecular Virology and Immunology, INRAE, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emanuel Jeldes
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Anne Boland
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Nicole Farfán
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Faculty of Health and Social Sciences, University of Las Americas, Santiago 8242125, Chile
| | - Jaime Villegas
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- School of Veterinary Medicine, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Gino Nardocci
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
- Center for Biomedical Research and Innovation (CIIB), Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Luis O. Burzio
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
| | - Verónica A. Burzio
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| |
Collapse
|
6
|
Chen M, Fan L, Wu G, Wang H, Gu S. Histone methyltransferase enzyme enhancer of zeste homolog 2 counteracts ischemic brain injury via H3K27me3-mediated regulation of PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2240-2255. [PMID: 37334851 DOI: 10.1002/tox.23863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Epigenetic histone methylation plays a crucial role in cerebral ischemic injury, particularly in the context of ischemic stroke. However, the complete understanding of regulators involved in histone methylation, such as Enhancer of Zeste Homolog 2 (EZH2), along with their functional effects and underlying mechanisms, remains incomplete. METHODS Here, we employed a rat model of MCAO (Middle cerebral artery occlusion) and an OGD (Oxygen-Glucose Deprivation) model of primary cortical neurons to study the role of EZH2 and H3K27me3 in cerebral ischemia-reperfusion injury. The infarct volume was measured through TTC staining, while cell apoptosis was detected using TUNEL staining. The mRNA expression levels were quantified through quantitative real-time polymerase chain reaction (qPCR), whereas protein expressions were evaluated via western blotting and immunofluorescence experiments. RESULTS The expression levels of EZH2 and H3K27me3 were upregulated in OGD; these expression levels were further enhanced by GSK-J4 but reduced by EPZ-6438 and AKT inhibitor (LY294002) under OGD conditions. Similar trends were observed for mTOR, AKT, and PI3K while contrasting results were noted for UTX and JMJD3. The phosphorylation levels of mTOR, AKT, and PI3K were activated by OGD, further stimulated by GSK-J4, but inhibited by EPZ-6438 and AKT inhibitor. Inhibition of EZH2 or AKT effectively counteracted OGD-/MCAO-induced cell apoptosis. Additionally, inhibition of EZH2 or AKT mitigated MCAO-induced infarct size and neurological deficit in vivo. CONCLUSIONS Collectively, our results demonstrate that EZH2 inhibition exerts a protective effect against ischemic brain injury by modulating the H3K27me3/PI3K/AKT/mTOR signaling pathway. The results provide novel insights into potential therapeutic mechanisms for stroke treatment.
Collapse
Affiliation(s)
- Miao Chen
- Department of Emergency, The First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Limin Fan
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guoping Wu
- Department of Emergency, Sansha People's Hospital, Sansha, People's Republic of China
| | - Hairong Wang
- Department of Emergency, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuo Gu
- Department of Pediatric Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|
7
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
8
|
Liu L, Li L, Zu W, Jing J, Liu G, Sun T, Xie Q. PIWI-interacting RNA-17458 is oncogenic and a potential therapeutic target in cervical cancer. J Cancer 2023; 14:1648-1659. [PMID: 37325054 PMCID: PMC10266240 DOI: 10.7150/jca.83446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Cervical cancer (CC) is one of the leading cancers among the female reproductive system. The piwi-interacting RNA (piRNA) function and biogenesis has been studied in various cancers, including CC. But the precise mechanism of piRNA in CC is still unknown. In our study, we found that piRNA-17458 was overexpressed in CC tissues and cells. piRNA-17458 mimic and inhibitor promoted and suppressed proliferation, migration and invasion ability of CC cells, respectively. We also demonstrated that piRNA-17458 mimic could contribute to tumor growth in mice xenograft models. Besides, we also found that the piRNA-17458 mimic could enhance mRNA N6-methyladenosine(m6A) levels and increase WTAP stability in CC cells, while the effects of the mimic was reversed by the WTAP knockdown. The results of dual luciferase reporter assay showed that WTAP was a direct target of piRNA-17458. Knockdown of WTAP attenuated proliferation, migration and invasion of CC cells in piRNA-17458 mimic group. Our finding not only demonstrates for the first time that piRNA-17458 is overexpressed in CC tissues and cells, but also shows that piRNA-17458 promotes tumorigenesis of CC in a WTAP-mediated m6A methylation manner.
Collapse
Affiliation(s)
- Lianqin Liu
- Department of Pathology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| | - Liu Li
- Department of Nursing, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| | - Wufan Zu
- Department of Immunology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, 453003, the People's Republic of China
| | - Jiayu Jing
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| | - Guanjun Liu
- Internal Medicine Department of Oncology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| | - Qi Xie
- Department of Pathology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, the People's Republic of China
| |
Collapse
|
9
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
10
|
Tong Y, Guan B, Sun Z, Dong X, Chen Y, Li Y, Jiang Y, Li J. Ratiometric fluorescent detection of exosomal piRNA-823 based on Au NCs/UiO-66-NH 2 and target-triggered rolling circle amplification. Talanta 2023; 257:124307. [PMID: 36764170 DOI: 10.1016/j.talanta.2023.124307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
piR-823 is a newly discovered colorectal cancer marker with high diagnostic efficacy. However, the current quantification methods have complicated operations and high cost, which restrict its clinical application. Herein, a metal-organic framework (MOF) with a UiO-66 prototype structure which supports gold nanoclusters (Au NCs), Au NCs/UiO-66-NH2, were prepared as a model nanobiosensing platform for ratiometric detection of exosomal piR-823. The rolling circle amplification process provides high sensitivity and the ratiometric detection process ensures good accuracy of the sensor. Such biosensor showed a wide linear range of 0.04-4 pM, and a low detection limit of 10.2 fM towards piR-823. In addition, piR-823 can be used as an effective supplement to carcinoembryonic antigen (CEA) in clinical diagnosis of colorectal cancer. This study not only provides a potentially valuable ratio fluorescence platform involving enzyme catalytic reaction, but also offers a design blueprint for further expansion of nanotechnology in the diverse biological analysis.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Xiangjun Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China.
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Zou X, Huang Z, Guan C, Shi W, Gao J, Wang J, Cui Y, Wang M, Xu Y, Zhong X. Exosomal miRNAs in the microenvironment of pancreatic cancer. Clin Chim Acta 2023; 544:117360. [PMID: 37086943 DOI: 10.1016/j.cca.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pancreatic cancer (PC) is highly aggressive having an extremely poor prognosis. The tumor microenvironment (TME) of PC is complex and heterogeneous. Various cellular components in the microenvironment are capable of secreting different active substances that are involved in promoting tumor development. Their release may occur via exosomes, the most abundant extracellular vesicles (EVs), that can carry numerous factors as well as act as a mean of intercellular communication. Emerging evidence suggests that miRNAs are involved in the regulation and control of many pathological and physiological processes. They can also be transported by exosomes from donor cells to recipient cells, thereby regulating the TME. Exosomal miRNAs show promise for use as future targets for PC diagnosis and prognosis, which may reveal new treatment strategies for PC. In this paper, we review the important role of exosomal miRNAs in mediating cellular communication in the TME of PC as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Central hospital of Baoji, Baoji, Shaanxi 721000, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Xu
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|