1
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Deluque AL, de Almeida LF, Oliveira BM, Souza CS, Maciel ALD, Francescato HDC, Giovanini C, Costa RS, Coimbra TM. Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats. J Pathol Transl Med 2024; 58:219-228. [PMID: 39183499 PMCID: PMC11424196 DOI: 10.4132/jptm.2024.07.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms. METHODS Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7. RESULTS VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway. CONCLUSIONS Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
Collapse
Affiliation(s)
- Amanda Lima Deluque
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Ferreira de Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Beatriz Magalhães Oliveira
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cláudia Silva Souza
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Lívia Dias Maciel
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Heloísa Della Coletta Francescato
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cleonice Giovanini
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roberto Silva Costa
- Laboratory of Renal Pathology, Division of Nephrology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Terezila Machado Coimbra
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
3
|
Zheng D, Ruan X, Wu Q, Qiu Y, Ruan S. Yishen Jiangzhuo decoction attenuates cisplatin‑induced acute kidney injury by inhibiting inflammation, oxidative stress and apoptosis through the TNF signal pathway. Exp Ther Med 2024; 28:331. [PMID: 38979022 PMCID: PMC11228562 DOI: 10.3892/etm.2024.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/22/2024] [Indexed: 07/10/2024] Open
Abstract
The present study aimed to investigate the therapeutic effects and mechanisms of Yishen Jiangzhuo decoction (YSJZD) in a mouse model of cisplatin-induced acute kidney injury (AKI). The mice were divided into the NC, cisplatin and cisplatin + YSJZD groups. A concentration-dependent effect of YSJZD on cisplatin-induced AKI was observed and the optimal concentration for intervention was calculated. Changes in blood urea nitrogen and serum creatinine levels combined with hematoxylin and eosin and periodic acid-Schiff staining and transmission electron microscopy observations indicated that YSJZD enhanced renal function, reduced pathological injury and protected renal tubular epithelial cells in cisplatin-induced AKI mice. The results of the transcriptomic and enrichment analyses showed that the mechanisms of YSJZD may be associated with inflammation, oxidation, apoptosis and the TNF signal pathway. Immunofluorescence, oxidative stress index, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and western blotting revealed that YSJZD downregulated apoptosis in the renal tissues of AKI mice and further decreased the expression levels of p-p65, p-p38 MAPK, TNF-α, cleaved-caspase-3 and malondialdehyde, while increasing the levels of NAD-dependent protein deacetylase sirtuin-3, glutathione and superoxide dismutase. Overall, the results showed that YSJZD could effectively abrogate cisplatin-induced AKI in mice through mechanisms primarily related to its anti-inflammatory, antioxidative and antiapoptotic effects by inhibited the TNF signal pathway. YSJZD warrants further investigation as a clinical empirical prescription.
Collapse
Affiliation(s)
- Dengyong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Nephrology, The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qiang Wu
- Department of Nephrology, The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Yuliang Qiu
- Department of Nephrology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Shiwei Ruan
- Department of Nephrology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
4
|
Liang R, Shi W, Li T, Gao H, Wan T, Li B, Zhou X. Effect of exogenous calcitriol on myopia development and axial length in guinea pigs with form deprivation myopia. Sci Rep 2024; 14:11382. [PMID: 38762668 PMCID: PMC11102427 DOI: 10.1038/s41598-024-62131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
The annual increase in myopia prevalence poses a significant economic and health challenge. Our study investigated the effect of calcitriol role in myopia by inducing the condition in guinea pigs through form deprivation for four weeks. Untargeted metabolomics methods were used to analyze the differences in metabolites in the vitreous body, and the expression of vitamin D receptor (VDR) in the retina was detected. Following form deprivation, the guinea pigs received intraperitoneal injections of calcitriol at different concentrations. We assessed myopia progression using diopter measurements and biometric analysis after four weeks. Results indicated that form deprivation led to a pronounced shift towards myopia, characterized by reduced choroidal and scleral thickness, disorganized collagen fibers, and decreased scleral collagen fiber diameter. Notably, a reduction in calcitriol expression in vitreous body, diminished vitamin D and calcitriol levels in the blood, and decreased VDR protein expression in retinal tissues were observed in myopic guinea pigs. Calcitriol administration effectively slowed myopia progression, preserved choroidal and scleral thickness, and prevented the reduction of scleral collagen fiber diameter. Our findings highlight a significant decrease in calcitriol and VDR expressions in myopic guinea pigs and demonstrate that exogenous calcitriol supplementation can halt myopia development, enhancing choroidal and scleral thickness and scleral collagen fiber diameter.
Collapse
Affiliation(s)
- Rongbin Liang
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201500, China
| | - Wenqing Shi
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201500, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201500, China
| | - Hui Gao
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Ting Wan
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201500, China
| | - Bing Li
- Department of Central Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201500, China.
| |
Collapse
|
5
|
Saad HM, Elekhnawy E, Shaldam MA, Alqahtani MJ, Altwaijry N, Attallah NGM, Hussein IA, Ibrahim HA, Negm WA, Salem EA. Rosuvastatin and diosmetin inhibited the HSP70/TLR4 /NF-κB p65/NLRP3 signaling pathways and switched macrophage to M2 phenotype in a rat model of acute kidney injury induced by cisplatin. Biomed Pharmacother 2024; 171:116151. [PMID: 38262148 DOI: 10.1016/j.biopha.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Numerous efforts to manage acute kidney injury (AKI) were unsuccessful because its pathophysiology is still poorly understood. Thus, our research hotspot was to explore the possible renoprotective effects of rosuvastatin (Ros) and diosmetin (D) on macrophage polarization and the role of HSP70/TLR4/MyD88/NF-κB p65/NLRP3/STAT3 signaling in cis-induced AKI and study the activity of D against uropathogenic bacteria. Fifty-four albino male rats were randomized into 9 groups equally: Control, Ros, D20, D40, untreated Cis, and Cis groups cotreated with Ros, D20, D40 and Ros+D40 for 10 days. Our results indicated that Ros and D, in a dose-dependent manner, markedly restored body weight, systolic blood pressure, and renal histological architecture besides significantly upregulated SOD levels, expression of anti-inflammatory CD163 macrophages, arginase1levels, IL-10 levels,STAT3 and PCNA immunoreactivity. Also, they significantly downregulated renal index, serum urea, serum creatinine, serum cystatin c, inflammatory biomarkers (C reactive protein, IL1β & TNF-α), MDA levels, HSP70/TLR4/MyD88/NF-κB p65/NLRP3 expressions, proinflammatory CD68 macrophages and caspase-3 immunoreactivity, resulting in a reversal of cis-induced renal damage. These findings were further confirmed by molecular docking that showed the binding affinity of Ros and D towards TLR4 and NLRP3. Furthermore, D had antibacterial action with a minimum inhibitory concentration ranging from 128 to 256 µg/mL and caused a delay in the growth of the tested isolates, and negatively affected the membrane integrity. In conclusion, Ros and D had antioxidant, anti-inflammatory and antiapoptotic properties and switched macrophage from proinflammatory CD68 to anti-inflammatory CD163. Additionally, the targeting of HSP70/TLR4/MyD88/NF-κB p65/NLRP3/STAT3 signals are effective therapeutic strategy in AKI.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, Egypt.
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | | - Ismail A Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|