1
|
Ueno Y, Morishima Y, Hata T, Shindo A, Murata H, Saito T, Nakamura Y, Shindo K. Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review. Neurobiol Dis 2024; 200:106639. [PMID: 39168358 DOI: 10.1016/j.nbd.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons, leading to death resulting mainly from respiratory failure, for which there is currently no curative treatment. Underlying pathological mechanisms for the development of ALS are diverse and have yet to be elucidated. Non-invasive testing to isolate circulating molecules including microRNA to diagnose ALS has been reported, but circulating extracellular vesicle (EV)-derived microRNA has not been fully studied in the ALS population. METHODS A systematic literature review to explore studies investigating the profile of microRNAs in EVs from blood samples of ALS patients was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline. RESULTS Eleven studies including a total of 263 patients with ALS were included in the present systematic review. The majority of patients had sporadic ALS, though a small number of patients with ALS having genetic mutations were included. Seven studies used plasma-derived EVs, and the remaining four studies used serum-derived EVs. RNA sequencing or microarrays were used in eight studies, and quantitative PCR was used in eight studies, of which five studies used RNA sequencing or microarrays for screening and quantitative PCR for validation. There was overlap of miR-199a-3p and miR-199a-5p in three studies. CONCLUSIONS Overall, the systematic review addressed the current advances in the profiling of microRNAs in circulating EVs of ALS patients. Blood samples, isolation of EVs, and microRNA analysis were diverse. Although there was an overlap of miR-199a-3p and miR-199a-5p, collection of further evidence is warranted.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, University of Yamanashi, Chuo, Japan.
| | - Yuto Morishima
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Takanori Hata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Atsuhiko Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Hiroaki Murata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Tatsuya Saito
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Yuki Nakamura
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Kazumasa Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
2
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
3
|
Chen Y, Wang J, Zhang W, Guo X, Ren J, Zhang L, Gao A. Extracellular vesicles-derived long noncoding RNAs participated in benzene hematotoxicity by mediating apoptosis and autophagy. Toxicol Appl Pharmacol 2024; 491:117076. [PMID: 39214172 DOI: 10.1016/j.taap.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Benzene is a common contaminant in the workplace and wider environment, which induces hematotoxicity. Our previous study has implicated that lncRNAs mediated apoptosis and autophagy induced by benzene. Nevertheless, the roles of extracellular vesicle(EVs)-derived lncRNAs in benzene toxicity are unknown. However, the role of EVs and EVs-derived lncRNAs in benzene-induced toxicity remains unclear. In this research, we explored the function of EVs and EVs-derived lncRNAs in cell-cell communication through benzene-induced apoptosis and autophagy. Our findings demonstrated that EVs derived from 1,4-BQ-treated cells treated cells and coculture with 1,4-BQ-treated cells enhanced apoptosis and autophagy via regulating the pathways of PI3K-AKT-mTOR and chaperone-mediated autophagy. Treating with GW4869 in 1,4-BQ-treated cells significantly inhibited EV secretion, which reduced apoptosis and autophagy. Furthermore, we identified a set of differentially expressed autophagy- and apoptosis-related lncRNAs using EVs-derived lncRNA sequencing. Among them, 8 candidate lncRNAs were upregulated in EVs derived from 1,4-BQ-treated cells, as determined by lncRNA sequencing and qRT-PCR. Importantly, these lncRNAs were also increased in the serum EVs of benzene-exposed workers. 1,4-BQ-treated cells released EVs that transfer differentially expressed lncRNAs, thereby inducing apoptosis and autophagy in the recipient cells. The above results support the hypothesis that EVs-derived lncRNAs participate in intercellular communication during benzene-induced hematotoxicity and function as potential biomarkers for risk assessment of benzene-exposed workers.
Collapse
Affiliation(s)
- Yujiao Chen
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Chang C, Wang Y, Wang R, Bao X. Considering Context-Specific microRNAs in Ischemic Stroke with Three "W": Where, When, and What. Mol Neurobiol 2024; 61:7335-7353. [PMID: 38381296 DOI: 10.1007/s12035-024-04051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- M.D. Program, Peking Union Medical College, Beijing, 100730, China
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Sajanti A, Li Y, Hellström S, Cao Y, Girard R, Umemori J, Frantzén J, Koskimäki F, Lyne SB, Falter J, Rantamäki T, Takala R, Posti JP, Roine S, Kolehmainen S, Srinath A, Jänkälä M, Puolitaival J, Rahi M, Rinne J, Castrén E, Koskimäki J. Brain plasticity and neuroinflammatory protein biomarkers with circulating MicroRNAs as predictors of acute brain injury outcome - A prospective cohort study. J Neurol Sci 2024; 464:123169. [PMID: 39126731 DOI: 10.1016/j.jns.2024.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Brain recovery mechanisms after injuries like aneurysmal subarachnoid hemorrhage (aSAH), ischemic stroke (IS), and traumatic brain injury (TBI) involve brain plasticity, synaptic regeneration, and neuroinflammation. We hypothesized that serum levels of the p75 neurotrophic receptor (p75NTR) and associated signaling proteins, as well as differentially expressed (DE) microRNAs, could predict recovery outcomes irrespective of injury type. METHODS A prospective patient cohort with ischemic stroke (IS, n = 30), aneurysmal subarachnoid hemorrhage (aSAH, n = 31), and traumatic brain injury (TBI, n = 13) were evaluated (total n = 74). Serum samples were collected at two post-injury intervals (early: 1-3 days, late: 4-8 days), and outcomes were assessed after three months using the modified Rankin Scale (mRS), categorizing outcomes as favorable (mRS 0-3) or unfavorable (mRS 4-6). Six proteins were measured using ELISAs: p75NTR, NGF, sortilin, IL1β, TNFα, and cyclophilin. DE microRNAs were identified using DESeq2, and their target genes were predicted. Serum molecules between patients with differing outcomes were compared using a Kolmogorov-Smirnov test, 2-tailed t-test and multivariate linear discriminant analysis (LDA). RESULTS Favorable (n = 46) and unfavorable (n = 28) outcome cohorts were balanced with age and sex (p = 0.25 and 0.63). None of the studied proteins correlated with age. Combinatory LDA of the six protein biomarkers indicated strong prognostic value for favorable outcomes (OR 2.09; AUC = 70.3%, p = 0.0058). MicroRNA expression changes over time were identified in the aSAH, TBI, and IS groups (p < 0.05, FDR corrected). Twenty-three microRNAs were commonly DE across all brain injury groups when comparing favorable and unfavorable outcomes (p < 0.05). LDA of four microRNAs targeting the studied proteins showed high prognostic accuracy (OR 11.7; AUC = 94.1%, p = 0.016). CONCLUSIONS The combined prognostic microRNA and protein biomarker models demonstrated accurate outcome prognostication across diverse injury types, implying the presence of a common recovery mechanism. DE microRNAs were found to target the studied molecules, suggesting a potential mechanistic role in recovery. Further investigation is warranted to study these molecules in prognostication, as well as therapeutic targets for enhancing recovery.
Collapse
Affiliation(s)
- Antti Sajanti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Santtu Hellström
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Ying Cao
- Department of Radiation Oncology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, United States of America
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, FI-00014 Helsinki, Finland; Gene and Cell Technology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Janek Frantzén
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Fredrika Koskimäki
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, FI-20521 Turku, Finland
| | - Seán B Lyne
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Johannes Falter
- Department of Neurosurgery, University Medical Center of Regensburg, Regensburg 93042, Germany
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Riikka Takala
- Perioperative Services, Intensive Care and Pain Medicine and Department of Anaesthesiology and Intensive Care, Turku University Hospital and University of Turku, P.O. Box52, FI-20521 Turku, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Susanna Roine
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, FI-20521 Turku, Finland
| | - Sulo Kolehmainen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, United States of America
| | - Miro Jänkälä
- Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Finland
| | - Jukka Puolitaival
- Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Finland
| | - Melissa Rahi
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Jaakko Rinne
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Janne Koskimäki
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, P.O. Box 52, FI-20521 Turku, Finland; Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, FI-00014 Helsinki, Finland; Department of Neurosurgery, Oulu University Hospital, Box 25, 90029 OYS, Finland.
| |
Collapse
|
6
|
Pir GJ, Zahid MA, Akhtar N, Ayadathil R, Pananchikkal SV, Joseph S, Morgan DM, Babu B, Ty Ui R, Sivasankaran S, Francis R, Own A, Shuaib A, Parray A, Agouni A. Differentially expressed miRNA profiles of serum derived extracellular vesicles from patients with acute ischemic stroke. Brain Res 2024; 1845:149171. [PMID: 39168264 DOI: 10.1016/j.brainres.2024.149171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) participate in diverse cellular changes following acute ischemic stroke (AIS). Circulating miRNAs, stabilized and delivered to target cells via extracellular vesicles (EVs), are potential biomarkers to facilitate diagnosis, prognosis, and therapeutic modulation. We aimed to identify distinctive expression patterns of circulating EV-miRNAs in AIS patients. METHODS miRNA profiles from EVs, isolated from plasma samples collected within 24 h following AIS diagnosis, were examined between a dataset of 10 age-, gender- and existing comorbidities-matched subjects (5 AIS and 5 healthy controls, HC). We measured 2578 miRNAs and identified differentially expressed miRNAs between AIS and HC. An enrichment analysis was conducted to delineate the networks and biological pathways implicated by differentially expressed microRNAs. An enrichment analysis was conducted to delineate the networks and biological pathways implicated by differentially expressed microRNAs. RESULTS Five miRNAs were differentially expressed between stroke (AIS) versus control (HC). hsa-let-7b-5p, hsa-miR-16-5p, and hsa-miR-320c were upregulated, whereas hsa-miR-548a-3p and hsa-miR-6808-3p, with no previously reported changes in stroke were downregulated. The target genes of these miRNAs affect various cellular pathways including, RNA transport, autophagy, cell cycle progression, cellular senescence, and signaling pathways like mTOR, PI3K-Akt, and p53. Key hub genes within these networks include TP53, BCL2, Akt, CCND1, and NF-κB. These pathways are crucial for cellular function and stress response, and their dysregulation can have significant implications for the disease processes. CONCLUSION Our findings reveal distinct circulating EV-miRNA expression patterns in AIS patients from Qatar, highlighting potential biomarkers that could aid in stroke diagnosis and therapeutic strategies. The identified miRNAs are involved in critical cellular pathways, offering novel insights into the molecular mechanisms underlying stroke pathology. Circulating EV-miRNAs differentially expressed in AIS may have a pathophysiological role and may guide further research to elucidate their precise mechanisms.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sajitha V Pananchikkal
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sujata Joseph
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Deborah M Morgan
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Blessy Babu
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ryan Ty Ui
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shobhna Sivasankaran
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Nowicka G. Extracellular vesicles in the diagnosis and treatment of cardiovascular disease. What's behind? What do we need to implement them into clinical practice? Int J Biochem Cell Biol 2024; 172:106600. [PMID: 38806094 DOI: 10.1016/j.biocel.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Extracellular vesicles (EVs) represent a heterogeneous group of particles secreted by cells to transfer information from the cell of origin to recipient cells by carrying various bioactive molecules. Numerous PubMed records on EVs reveal a burgeoning interest in EV-research, with a notable subset focusing on the potential diagnostic and therapeutic applications of EVs for diverse diseases, including cardiovascular disease (CVD), currently a globally leading cause of mortality. However, this great diagnostic and clinical potential has not yet been translated into clinical practice. No EV-based biomarkers and EV-therapeutic products have been approved, and EV-based therapy for CVD has not yet been shown to be effective. Therefore, this paper aims to scrutinize available data and identify what is needed to translate the underlying potential of EVs into specific EV-biomarkers and EV-therapeutic tools applicable in clinical practice.
Collapse
Affiliation(s)
- Grażyna Nowicka
- Medical University of Warsaw, Department of Biochemistry and Pharmacogenomics, Banacha 1, Warszawa 02-091, Poland.
| |
Collapse
|
8
|
Manwani B, Brathaban N, Baqai A, Munshi Y, Ahnstedt HW, Zhang M, Arkelius K, Llera T, Amorim E, Elahi FM, Singhal NS. Small RNA signatures of acute ischemic stroke in L1CAM positive extracellular vesicles. Sci Rep 2024; 14:13560. [PMID: 38866905 PMCID: PMC11169361 DOI: 10.1038/s41598-024-63633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
L1CAM-positive extracellular vesicles (L1EV) are an emerging biomarker that may better reflect ongoing neuronal damage than other blood-based biomarkers. The physiological roles and regulation of L1EVs and their small RNA cargoes following stroke is unknown. We sought to characterize L1EV small RNAs following stroke and assess L1EV RNA signatures for diagnosing stroke using weighted gene co-expression network analysis and random forest (RF) machine learning algorithms. Interestingly, small RNA sequencing of plasma L1EVs from patients with stroke and control patients (n = 28) identified micro(mi)RNAs known to be enriched in the brain. Weighted gene co-expression network analysis (WGCNA) revealed small RNA transcript modules correlated to diagnosis, initial NIH stroke scale, and age. L1EV RNA signatures associated with the diagnosis of AIS were derived from WGCNA and RF classification. These small RNA signatures demonstrated a high degree of accuracy in the diagnosis of AIS with an area under the curve (AUC) of the signatures ranging from 0.833 to 0.932. Further work is necessary to understand the role of small RNA L1EV cargoes in the response to brain injury, however, this study supports the utility of L1EV small RNA signatures as a biomarker of stroke.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Nivetha Brathaban
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Abiya Baqai
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Yashee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hilda W Ahnstedt
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Mengqi Zhang
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Kajsa Arkelius
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Ted Llera
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Edilberto Amorim
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fanny M Elahi
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA.
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94150, USA.
| |
Collapse
|
9
|
Vestergaard SB, Damsbo AG, Pedersen NL, Zachariassen K, Drasbek KR, Østergaard L, Andersen G, Dalby RB, Mortensen JK. Exploring vascular contributions to cognitive impairment and dementia (ENIGMA): protocol for a prospective observational study. BMC Neurol 2024; 24:110. [PMID: 38570800 PMCID: PMC10988942 DOI: 10.1186/s12883-024-03601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) is common. However, the underlying pathophysiology remains largely unknown. Understanding the role of microvascular changes and finding markers that can predict PSCI, could be a first step towards better screening and management of PSCI. Capillary dysfunction is a pathological feature of cerebral small vessel disease and may play a role in the mechanisms underlying PSCI. Extracellular vesicles (EVs) are secreted from cells and may act as disease biomarkers. We aim to investigate the role of capillary dysfunction in PSCI and the associations between EV characteristics and cognitive function one year after acute ischemic stroke (AIS) and transient ischemic attack (TIA). METHODS The ENIGMA study is a single-centre prospective clinical observational study conducted at Aarhus University Hospital, Denmark. Consecutive patients with AIS and TIA are included and followed for one year with follow-up visits at three and 12 months. An MRI is performed at 24 h and 12 months follow-up. EV characteristics will be characterised from blood samples drawn at 24 h and three months follow-up. Cognitive function is assessed three and 12 months after AIS and TIA using the Repeatable Battery for the Assessment of Neuropsychological Status. DISCUSSION Using novel imaging and molecular biological techniques the ENIGMA study will provide new knowledge about the vascular contributions to cognitive decline and dementia. TRIAL REGISTRATION The study is retrospectively registered as an ongoing observational study at ClinicalTrials.gov with the identifier NCT06257823.
Collapse
Affiliation(s)
- Sigrid Breinholt Vestergaard
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Andreas Gammelgaard Damsbo
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Niels Lech Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Katrine Zachariassen
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Kim Ryun Drasbek
- Department of Clinical Medicine Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Aarhus C, 8000, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Aarhus C, 8000, Denmark
| | - Grethe Andersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Rikke Beese Dalby
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Janne Kærgård Mortensen
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Department of Neurology, Aarhus University, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N, 8200, Denmark.
| |
Collapse
|
10
|
Pantaleão LC, Loche E, Fernandez-Twinn DS, Dearden L, Córdova-Casanova A, Osmond C, Salonen MK, Kajantie E, Niu Y, de Almeida-Faria J, Thackray BD, Mikkola TM, Giussani DA, Murray AJ, Bushell M, Eriksson JG, Ozanne SE. Programming of cardiac metabolism by miR-15b-5p, a miRNA released in cardiac extracellular vesicles following ischemia-reperfusion injury. Mol Metab 2024; 80:101875. [PMID: 38218535 PMCID: PMC10832484 DOI: 10.1016/j.molmet.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
Collapse
Affiliation(s)
- Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Adriana Córdova-Casanova
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Public Health Unit, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliana de Almeida-Faria
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Benjamin D Thackray
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tuija M Mikkola
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Folkhalsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Johan G Eriksson
- Folkhalsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Van der Auwera S, Ameling S, Wittfeld K, Frenzel S, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating microRNA miR-425-5p Associated with Brain White Matter Lesions and Inflammatory Processes. Int J Mol Sci 2024; 25:887. [PMID: 38255959 PMCID: PMC10815886 DOI: 10.3390/ijms25020887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
White matter lesions (WML) emerge as a consequence of vascular injuries in the brain. While they are commonly observed in aging, associations have been established with neurodegenerative and neurological disorders such as dementia or stroke. Despite substantial research efforts, biological mechanisms are incomplete and biomarkers indicating WMLs are lacking. Utilizing data from the population-based Study of Health in Pomerania (SHIP), our objective was to identify plasma-circulating micro-RNAs (miRNAs) associated with WMLs, thus providing a foundation for a comprehensive biological model and further research. In linear regression models, direct association and moderating factors were analyzed. In 648 individuals, we identified hsa-miR-425-5p as directly associated with WMLs. In subsequent analyses, hsa-miR-425-5p was found to regulate various genes associated with WMLs with particular emphasis on the SH3PXD2A gene. Furthermore, miR-425-5p was found to be involved in immunological processes. In addition, noteworthy miRNAs associated with WMLs were identified, primarily moderated by the factors of sex or smoking status. All identified miRNAs exhibited a strong over-representation in neurodegenerative and neurological diseases. We introduced hsa-miR-425-5p as a promising candidate in WML research probably involved in immunological processes. Mir-425-5p holds the potential as a biomarker of WMLs, shedding light on potential mechanisms and pathways in vascular dementia.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|