1
|
Hu X, Xie H, Zhang X, Lin Y, Hu S, Hu J, He H, Li L, Liu H, Wang J. Combined analyses of mRNA and miRNA transcriptome reveal the molecular mechanisms of theca cells physiological differences in geese follicular selection stage. Poult Sci 2024; 103:104402. [PMID: 39510003 PMCID: PMC11577227 DOI: 10.1016/j.psj.2024.104402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
In avian, follicular selection is a key molecular event that can determine avian egg production. Theca cells (TC) are the main components of follicles, the molecular mechanisms about TCs physiological differences during follicle selection stage are still unclear. This study revealed significant differences in proliferation, apoptosis, lipid synthesis, and steroid secretion levels between prehierarchical theca cells (phTC) and hierarchical theca cells (hTC) of Tianfu meat-type geese. A total of 1,559 differentially expressed genes (DEG) and 71 differentially expressed miRNAs (DEM) were identified between phTCs and hTCs, respectively. Functional enrichment analysis results showed that 143 DEGs were enriched in the pathways related to cell proliferation/apoptosis and lipid/steroid metabolism. Protein-protein interaction (PPI) network results indicated the 143 DEGs have functional interactions. Additionally, the predicted target genes of 71 DEMs were jointly analyzed with the above 143 DEGs, and the results showed that 15 DEMs and 17 DEGs with targeted relationships were found. Among them, miR-202-5p was significantly down-regulated both in hTCs and hierarchical theca layers, and target prediction results showed that miR-202-5p may affect TCs proliferation/apoptosis by targeting CHPT1 to regulate the expression levels of CCN1/FOXO3; meanwhile, may affect TCs lipid/steroid metabolism and proliferation/apoptosis by targeting CHPT1 to regulate the expression levels of p53/ABCA1/SREBP-2. This study provides new insights into the regulatory mechanisms of TCs physiological differences during goose follicle selection.
Collapse
Affiliation(s)
- Xinyue Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengli Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xi Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yueyue Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
2
|
Meng J, Zhao Y, Song X, An Q, Wu Z. Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Anim Biotechnol 2024; 35:2259967. [PMID: 37750325 DOI: 10.1080/10495398.2023.2259967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In goats, most follicles in the ovaries will be atresia and only a few dominant follicles (DFs) may eventually mature and ovulate at a follicular wave. To investigate the potential microRNAs (miRNAs) that regulate the expression of genes associated with follicular dominance or atresia, small RNA sequencing was performed on granulosa cells of DF and subordinate follicle at the first follicular wave in goats. A total of 108 differentially expressed miRNAs were detected in the two types of follicle granulosa cells: 16 upregulated miRNAs and 92 downregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes analysis of the target genes showed that TKTL1, LOC102187810, LOC102184409 and ALDOA are closely associated with follicle dominance and are involved in the pentose phosphate pathway. Furthermore, a coexpression network of miRNAs and follicular dominance-related genes was constructed. The qPCR results well correlated with the small RNA sequencing data. Our findings provide new insight for exploring the molecular mechanism of miRNAs in regulating follicular development in goats.
Collapse
Affiliation(s)
- Jinzhu Meng
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, P.R. China
| | - Yuanyuan Zhao
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Xingchao Song
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Qingming An
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Zhenyang Wu
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| |
Collapse
|
3
|
Liu J, Guo C, Fu J, Liu D, Liu G, Sun B, Deng M, Guo Y, Li Y. Identification and Functional Analysis of circRNAs during Goat Follicular Development. Int J Mol Sci 2024; 25:7548. [PMID: 39062792 PMCID: PMC11277404 DOI: 10.3390/ijms25147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Litter size is a crucial quantitative trait in animals, closely linked to follicular development. Circular RNA (circRNA), a type of single-stranded closed-loop endogenous RNA with stable expression, plays pivotal roles in various biological processes, yet its function in goat follicular development remains unclear. In this study, we collected large (follicle diameter > 3 mm) and small (1 mm < follicle diameter < 3 mm) follicles from black goats in the Chuanzhong region for circRNA sequencing, with the aim of elucidating the functional circRNAs that influence follicle development in goats. Differential analysis revealed that 17 circRNAs were upregulated in large follicles, and 28 circRNAs were upregulated in small follicles. Functional enrichment analysis revealed significant enrichment of pathways related to reproduction, including cellular response to follicle-stimulating hormone stimulus, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Notch signaling pathway. Based on the ceRNA mechanism, 45 differentially expressed circRNAs were found to target and bind a total of 418 miRNAs, and an intercalation network including miR-324-3p (circRNA2497, circRNA5650), miR-202-5p (circRNA3333, circRNA5501), and miR-493-3p (circRNA4995, circRNA5508) was constructed. In addition, conservation analysis revealed that 2,239 circRNAs were conserved between goats and humans. Prediction of translation potential revealed that 154 circRNAs may potentially utilize both N6-methyladenosine (m6A) and internal ribosome entry site (IRES) translation mechanisms. Furthermore, the differential expression and circularization cleavage sites of five circRNAs were validated through RT-qPCR and DNA sequencing. Our study constructed a circRNA map in goat follicle development, offering a theoretical foundation for enhancing goat reproductive performance.
Collapse
Affiliation(s)
- Jie Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Conghui Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Fu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Wang J, Chen H, Zhang Y, Shen H, Zeng X. Long non-coding RNA Loc105611671 promotes the proliferation of ovarian granulosa cells and steroid hormone production upregulation of CDC42. Front Vet Sci 2024; 11:1366759. [PMID: 38500606 PMCID: PMC10944914 DOI: 10.3389/fvets.2024.1366759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Granulosa cells (GCs) are essential for follicular development, and long non-coding RNAs (LncRNAs) are known to support the maintenance of this process and hormone synthesis in mammals. Nevertheless, the regulatory roles of these lncRNAs within sheep follicular GCs remain largely unexplored. This study delved into the influence of a Loc105611671, on the proliferation and steroid hormone synthesis of sheep ovarian GCs and the associated target genes in vitro. Cell Counting Kit-8 (CCK-8) gain-of-function experiments indicated that overexpression of Loc105611671 significantly boosted GCs proliferation, along with estrogen (E2) and progesterone (P4) levels. Further mechanistic scrutiny revealed that Loc105611671 is primarily localized within the cytoplasm of ovarian granulosa cells and engages in molecular interplay with CDC42. This interaction results in the upregulation of CDC42 protein expression. Moreover, it was discerned that increased CDC42 levels contribute to augmented proliferation of follicular granulosa cells and the secretion of E2 and P4. Experiments involving co-transfection elucidated that the concurrent overexpression of CDC42 and Loc105611671 acted synergistically to potentiate these effects. These findings provide insights into the molecular underpinnings of fecundity in ovine species and may inform future strategies for enhancing reproductive outcomes.
Collapse
Affiliation(s)
- Jinglei Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hanying Chen
- School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Yongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hong Shen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Xiancun Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Dong S, Jiang S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. miR-128-3p Regulates Follicular Granulosa Cell Proliferation and Apoptosis by Targeting the Growth Hormone Secretagogue Receptor. Int J Mol Sci 2024; 25:2720. [PMID: 38473968 DOI: 10.3390/ijms25052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.
Collapse
Affiliation(s)
- Shucan Dong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shengwei Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Biwei Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Xu Z, Liu Q, Ning C, Yang M, Zhu Q, Li D, Wang T, Li F. miRNA profiling of chicken follicles during follicular development. Sci Rep 2024; 14:2212. [PMID: 38278859 PMCID: PMC10817932 DOI: 10.1038/s41598-024-52716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as transcription regulators in various aspects of follicular development, including steroidogenesis, ovulation, apoptosis, and gene regulation in poultry. However, there is a paucity of studies examining the specific impact of miRNAs on ovarian granulosa cells (GCs) across multiple grades in laying hens. Consequently, this study aims to investigate the roles of miRNAs in chicken GCs. By constructing miRNA expression profiles of GCs at 10 different time points, encompassing 4 pre-hierarchical, 5 preovulatory, and 1 postovulatory follicles stage, we identified highly expressed miRNAs involved in GC differentiation (miR-148a-3p, miR-143-3p), apoptosis (let7 family, miR-363-3p, miR-30c-5p, etc.), and autophagy (miR-128-3p, miR-21-5p). Furthermore, we discovered 48 developmentally dynamic miRNAs (DDMs) that target 295 dynamic differentially expressed genes (DDGs) associated with follicular development and selection (such as oocyte meiosis, progesterone-mediated oocyte maturation, Wnt signaling pathway, TGF-β signaling pathway) as well as follicular regression (including autophagy and cellular senescence). These findings contribute to a more comprehensive understanding of the intricate mechanisms underlying follicle recruitment, selection, and degeneration, aiming to enhance poultry's reproductive capacity.
Collapse
Affiliation(s)
- Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maosen Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
7
|
Li Y, Zhang Z, Wang S, Du X, Li Q. miR-423 sponged by lncRNA NORHA inhibits granulosa cell apoptosis. J Anim Sci Biotechnol 2023; 14:154. [PMID: 38053184 DOI: 10.1186/s40104-023-00960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
Collapse
Affiliation(s)
- Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuofan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|