1
|
Keller-Przybylkowicz S, Oskiera M, Liu X, Song L, Zhao L, Du X, Kruczynska D, Walencik A, Kowara N, Bartoszewski G. Transcriptome Analysis of White- and Red-Fleshed Apple Fruits Uncovered Novel Genes Related to the Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:1778. [PMID: 38339057 PMCID: PMC10855924 DOI: 10.3390/ijms25031778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The red flesh coloration of apples is a result of a biochemical pathway involved in the biosynthesis of anthocyanins and anthocyanidins. Based on apple genome analysis, a high number of regulatory genes, mainly transcription factors such as MYB, which are components of regulatory complex MYB-bHLH-WD40, and several structural genes (PAL, 4CL, CHS, CHI, F3H, DFR, ANS, UFGT) involved in anthocyanin biosynthesis, have been identified. In this study, we investigated novel genes related to the red-flesh apple phenotype. These genes could be deemed molecular markers for the early selection of new apple cultivars. Based on a comparative transcriptome analysis of apples with different fruit-flesh coloration, we successfully identified and characterized ten potential genes from the plant hormone transduction pathway of auxin (GH3); cytokinins (B-ARR); gibberellins (DELLA); abscisic acid (SnRK2 and ABF); brassinosteroids (BRI1, BZR1 and TCH4); jasmonic acid (MYC2); and salicylic acid (NPR1). An analysis of expression profiles was performed in immature and ripe fruits of red-fleshed cultivars. We have uncovered genes mediating the regulation of abscisic acid, salicylic acid, cytokinin, and jasmonic acid signaling and described their role in anthocyanin biosynthesis, accumulation, and degradation. The presented results underline the relationship between genes from the hormone signal transduction pathway and UFGT genes, which are directly responsible for anthocyanin color transformation as well as anthocyanin accumulation during apple-fruit ripening.
Collapse
Affiliation(s)
- Sylwia Keller-Przybylkowicz
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Michal Oskiera
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Xueqing Liu
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Laiqing Song
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Lingling Zhao
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Xiaoyun Du
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Dorota Kruczynska
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Agnieszka Walencik
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Norbert Kowara
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
2
|
Wang Z, Asghari M, Zahedipour-Sheshglani P, Mohammadzadeh K. Impact of 24-epibrassinoliode and methyl jasmonate on quality of Red Delicious apples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1621-1629. [PMID: 37827991 DOI: 10.1002/jsfa.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Changes in apple fruit quality indices in response to foliar spray with 24-epibrassinolide (EBL) at 0 and 1 μmol L-1 and methyl jasmonate (MeJA) at 0 and 0.5 μmol L-1 , as well as the combination of these phytohormones, were investigated at harvest and during cold storage. RESULTS Both phytohormones synergistically enhanced the fruit firmness, specific weight, size, fresh weight, water content, total antioxidant activity, total phenolics, ascorbic acid, total anthocyanins, total soluble solids/titratable acidity ratio and precocity. In addition, the fruit abscission pattern was changed in response to different treatments. Treated fruit exhibited lower weight loss and internal breakdown symptoms and higher total soluble solids index, firmness and phytochemicals during cold storage. A negative correlation was seen between fruit mass, firmness, specific weight, antioxidant activity, total phenolics and vitamin C content with internal breakdown occurrence and weight loss. CONCLUSION Foliar spray with EBL and MeJA during the growth season is a good environmental friendly and safe method for enhancing the apple fruit different quality parameters, marketability and postharvest life. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- ZhaoDan Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Mohammadreza Asghari
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Kamal Mohammadzadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Yang H, Wei Z, Wu Y, Zhang C, Lyu L, Wu W, Li W. Transcriptomic and Metabolomic Profiling Reveals the Variations in Carbohydrate Metabolism between Two Blueberry Cultivars. Int J Mol Sci 2023; 25:293. [PMID: 38203463 PMCID: PMC10778917 DOI: 10.3390/ijms25010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Blueberry is a high-quality fruit tree with significant nutritional and economic value, but the intricate mechanism of sugar accumulation in its fruit remains unclear. In this study, the ripe fruits of blueberry cultivars 'Anna' and 'Misty' were utilized as experimental materials, and physiological and multi-omics methodologies were applied to analyze the regulatory mechanisms of the difference in sugar content between them. The results demonstrated that the 'Anna' fruit was smaller and had less hardness than the 'Misty' fruit, as well as higher sugar content, antioxidant capability, and lower active substance content. A total of 7067 differentially expressed genes (DEGs) (3674 up-regulated and 3393 down-regulated) and 140 differentially abundant metabolites (DAMs) (82 up-regulated and 58 down-regulated) were identified between the fruits of the two cultivars. According to KEGG analysis, DEGs were primarily abundant in phenylpropanoid synthesis and hormone signal transduction pathways, whereas DAMs were primarily enriched in ascorbate and aldarate metabolism, phenylpropanoid biosynthesis, and the pentose phosphate pathway. A combined multi-omics study showed that 116 DEGs and 3 DAMs in starch and sucrose metabolism (48 DEGs and 1 DAM), glycolysis and gluconeogenesis (54 DEGs and 1 DAM), and the pentose phosphate pathway (14 DEGs and 1 DAM) were significantly enriched. These findings suggest that blueberries predominantly increase sugar accumulation by activating carbon metabolism network pathways. Moreover, we identified critical transcription factors linked to the sugar response. This study presents new understandings regarding the molecular mechanisms underlying blueberry sugar accumulation and will be helpful in improving blueberry fruit quality through breeding.
Collapse
Affiliation(s)
- Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
4
|
Li J, Quan Y, Wu Z, Han J, Zhang Y, Javed HU, Ma C, Jiu S, Zhang C, Wang L, Wang S. EBR and JA regulate aroma substance biosynthesis in 'Ruidu Hongyu' grapevine berries by transcriptome and metabolite combined analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1185049. [PMID: 37346128 PMCID: PMC10279965 DOI: 10.3389/fpls.2023.1185049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Volatile compounds including terpenes, aldehyde, phenol, and alcohol are significantly contributed floral and fruity aromas to the Muscat variety. 'Ruidu Hongyu' grapevine is one of the newly developed grape varieties, and cultivation of this variety has been extended across China due to unique quality traits and taste. In this study, HS-SPME/GC-MS and transcriptome sequencing analysis were performed to evaluate the impact of exogenous 2,4-epibrassinolide (EBR), jasmonic acid (JA), and their signaling inhibitors brassinazole (Brz)/sodium diethyldithiocarbamate (DIECA) on the biosynthesis of aroma substances in 'Ruidu Hongyu' grapevine. According to the results, exogenous BR and JA promoted the accumulation of various aroma substances, including hexenal, 2-hexenal, nerol oxide, vanillin, hotrienol, terpineol, neral, nerol, geraniol, and geranic acid. After EBR and JA treatments, most of the genes responsible for terpene, aldehyde, and alcohol biosynthesis expressed at a higher level than the CK group. Relatively, EBR treatment could not only promote endogenous BR biosynthesis and metabolism but also elevate BR signaling transduction. JA treatment contributed to endogenous JA and MeJA accumulation, as well. Through transcriptome sequencing, a total of 3043, 903, 1470, and 607 DEGs were identified in JA vs. JD, JA vs. CK, BR vs. CK, and BR vs. Brz, respectively. There were more DEGs under both EBR and JA treatments at late fruit ripening stages. The findings of this study increase our understanding regarding aroma substances biosynthesis and endogenous BR/JA metabolism in response to exogenous EBR and JA signals.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Quan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishu Wu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Han
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hafiz Umer Javed
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|