1
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
2
|
Saiz ML, Lozano-Chamizo L, Florez AB, Marciello M, Diaz-Bulnes P, Corte-Iglesias V, Bernet CR, Rodrigues-Diez RR, Martin-Martin C, Rodriguez-Santamaria M, Fernandez-Vega I, Rodriguez RM, Diaz-Corte C, Suarez-Alvarez B, Filice M, Lopez-Larrea C. BET inhibitor nanotherapy halts kidney damage and reduces chronic kidney disease progression after ischemia-reperfusion injury. Biomed Pharmacother 2024; 174:116492. [PMID: 38537579 DOI: 10.1016/j.biopha.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain; Atrys Health, Madrid E-28001, Spain
| | - Aida Bernardo Florez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| | - Cristian Ruiz Bernet
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Raul R Rodrigues-Diez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Mar Rodriguez-Santamaria
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain
| | - Ivan Fernandez-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain; Biobank of Principality of Asturias, Oviedo 33011, Spain
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, Palma, Balearic Islands E-07120, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa79, Palma, Balearic Islands E-07120, Spain
| | - Carmen Diaz-Corte
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; Department of Nephrology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| |
Collapse
|
3
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
4
|
Gilham D, Wasiak S, Rakai BD, Fu L, Tsujikawa LM, Sarsons CD, Carestia A, Lebioda K, Johansson JO, Sweeney M, Kalantar-Zadeh K, Kulikowski E. Apabetalone Downregulates Fibrotic, Inflammatory and Calcific Processes in Renal Mesangial Cells and Patients with Renal Impairment. Biomedicines 2023; 11:1663. [PMID: 37371758 DOI: 10.3390/biomedicines11061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms are implicated in transcriptional programs driving chronic kidney disease (CKD). Apabetalone is an orally available inhibitor of bromodomain and extraterminal (BET) proteins, which are epigenetic readers that modulate gene expression. In the phase 3 BETonMACE trial, apabetalone reduced risk of major adverse cardiac events (MACE) by 50% in the CKD subpopulation, indicating favorable effects along the kidney-heart axis. Activation of human renal mesangial cells (HRMCs) to a contractile phenotype that overproduces extracellular matrix (ECM) and inflammatory cytokines, and promotes calcification, frequently accompanies CKD to drive pathology. Here, we show apabetalone downregulated HRMC activation with TGF-β1 stimulation by suppressing TGF-β1-induced α-smooth muscle actin (α-SMA) expression, α-SMA assembly into stress fibers, enhanced contraction, collagen overproduction, and expression of key drivers of fibrosis, inflammation, or calcification including thrombospondin, fibronectin, periostin, SPARC, interleukin 6, and alkaline phosphatase. Lipopolysaccharide-stimulated expression of inflammatory genes IL6, IL1B, and PTGS2 was also suppressed. Transcriptomics confirmed apabetalone affected gene sets of ECM remodeling and integrins. Clinical translation of in vitro results was indicated in CKD patients where a single dose of apabetalone reduced plasma levels of key pro-fibrotic and inflammatory markers, and indicated inhibition of TGF-β1 signaling. While plasma proteins cannot be traced to the kidney alone, anti-fibrotic and anti-inflammatory effects of apabetalone identified in this study are consistent with the observed decrease in cardiovascular risk in CKD patients.
Collapse
Affiliation(s)
- Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | | | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Kenneth Lebioda
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Kamyar Kalantar-Zadeh
- Harbor-UCLA Medical Center, University of California Los Angeles, 1000 W Carson St, Torrance, CA 90502, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
5
|
Rayego-Mateos S, Basantes P, Morgado-Pascual JL, Brazal Prieto B, Suarez-Alvarez B, Ortiz A, Lopez-Larrea C, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Modulates Mitochondrial Dysfunction and Oxidative Stress Induced by Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:antiox12051130. [PMID: 37237996 DOI: 10.3390/antiox12051130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among the mechanisms involved in the progression of kidney disease, mitochondrial dysfunction has special relevance. Epigenetic drugs such as inhibitors of extra-terminal domain proteins (iBET) have shown beneficial effects in experimental kidney disease, mainly by inhibiting proliferative and inflammatory responses. The impact of iBET on mitochondrial damage was explored in in vitro studies in renal cells stimulated with TGF-β1 and in vivo in murine unilateral ureteral obstruction (UUO) model of progressive kidney damage. In vitro, JQ1 pretreatment prevented the TGF-β1-induced downregulation of components of the oxidative phosphorylation chain (OXPHOS), such as cytochrome C and CV-ATP5a in human proximal tubular cells. In addition, JQ1 also prevented the altered mitochondrial dynamics by avoiding the increase in the DRP-1 fission factor. In UUO model, renal gene expression levels of cytochrome C and CV-ATP5a as well as protein levels of cytochrome C were reduced These changes were prevented by JQ1 administration. In addition, JQ1 decreased protein levels of the DRP1 fission protein and increased the OPA-1 fusion protein, restoring mitochondrial dynamics. Mitochondria also participate in the maintenance of redox balance. JQ1 restored the gene expression of antioxidant proteins, such as Catalase and Heme oxygenase 1 in TGF-β1-stimulated human proximal tubular cells and in murine obstructed kidneys. Indeed, in tubular cells, JQ1 decreased ROS production induced by stimulation with TGF-β1, as evaluated by MitoSOXTM. iBETs, such as JQ1, improve mitochondrial dynamics, functionality, and oxidative stress in kidney disease.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
| | - Beatriz Brazal Prieto
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Carlos Lopez-Larrea
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|