1
|
Deng Q, Li N, Bai S, Cao J, Jin YL, Zhang HE, Wang JK, Wang Q. SbPL1CE8 from Segatella bryantii combines with SbGH28GH105 in a multi-enzyme cascade for pectic biomass utilization. Int J Biol Macromol 2024; 279:135217. [PMID: 39216572 DOI: 10.1016/j.ijbiomac.2024.135217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pectinases are useful biocatalysts for pectic biomass processing and are extensively used in the food/feed, textile and papermaking industries. Two pectinase genes, a pectate lyase (SbPL1CE8) and a polygalacturonase (SbGH28GH105) were isolated from Segatella bryantii and functionally characterized. Recombinant rSbPL1CE8 was most active against polygalacturonic acid (PGA) and pectin with a 60 % degree of esterification, with kcat/Km values of 721.18 ± 64.77 and 327.02 ± 22.44 mL/s/mg, respectively. Truncated rSbPL1 acted as a mesophilic alkaline pectate lyase, which was highly resistant to inactivation by methanol and ethanol. The rSbPL1CE8 exclusively digested PGA and pectin into unsaturated digalacturonate (uG2), which was further converted into galacturonic acid by rSbGH28GH105. The rSbPL1CE8 was highly effective for saccharification of waste materials from Zea mays, Oryza sativa and Arachis hypogaea processing, and for ramie fiber degumming. This novel pectate lyase has great potential for application in industrial pectic biomass processing.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuning Bai
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Lan Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Lian MQ, Furusawa G, Teh AH. Trigalacturonate-producing pectate lyase PelQ1 from Saccharobesus litoralis with unique exolytic activity. Carbohydr Res 2024; 536:109045. [PMID: 38340525 DOI: 10.1016/j.carres.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
PelQ1 from Saccharobesus litoralis is a Ca2+-dependent pectate lyase belonging to the polysaccharide lyase family 1 (PL1). Although being an endolytic enzyme, it degraded polygalacturonate into predominantly unsaturated trimer in an exolytic manner with delayed production of dimer, tetramer and pentamer. The enzyme harbours a C-terminal domain from the carbohydrate-binding module family 13 (CBM13), whose presence facilitated the production of dimer. PelQ1's homology model showed that it possessed a well-conserved catalytic cleft, with R232 acting as the general base and R203 as the general acid. Structural comparison with DcPelC, a similar trimer-generating pectate lyase from Dickeya chrysanthemi EC16, implied that both enzymes' catalytic clefts encompassed at least eight subsites, i.e. -5 to +3. The unequal distribution of the subsites between the reducing and non-reducing ends of the cleavage site might be responsible for the exolytic generation of the trimer. As all but the -1, +1 and + 2 subsites could accommodate methylated galacturonate, this subclass of PL1 pectate lyases may function to help break up methylated pectin.
Collapse
Affiliation(s)
- Melissa Qianyue Lian
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, 11900, Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, 11900, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, 11900, Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|