1
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Németh A, Bányai GL, Dobos NK, Kós T, Gaál A, Varga Z, Buzás EI, Khamari D, Dank M, Takács I, Szász AM, Garay T. Extracellular vesicles promote migration despite BRAF inhibitor treatment in malignant melanoma cells. Cell Commun Signal 2024; 22:282. [PMID: 38778340 PMCID: PMC11110207 DOI: 10.1186/s12964-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.
Collapse
Affiliation(s)
- Afrodité Németh
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gréta L Bányai
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nikolett K Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamás Kós
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szász
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - Tamás Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Dobre EG, Nichita L, Popp C, Zurac S, Neagu M. Assessment of RAS-RAF-MAPK Pathway Mutation Status in Healthy Skin, Benign Nevi, and Cutaneous Melanomas: Pilot Study Using Droplet Digital PCR. Int J Mol Sci 2024; 25:2308. [PMID: 38396984 PMCID: PMC10889428 DOI: 10.3390/ijms25042308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In the present study, we employed the ddPCR and IHC techniques to assess the prevalence and roles of RAS and RAF mutations in a small batch of melanoma (n = 22), benign moles (n = 15), and normal skin samples (n = 15). Mutational screening revealed the coexistence of BRAF and NRAS mutations in melanomas and nevi and the occurrence of NRAS G12/G13 variants in healthy skin. All investigated nevi had driver mutations in the BRAF or NRAS genes and elevated p16 protein expression, indicating cell cycle arrest despite an increased mutational burden. BRAF V600 mutations were identified in 54% of melanomas, and NRAS G12/G13 mutations in 50%. The BRAF mutations were associated with the Breslow index (BI) (p = 0.029) and TIL infiltration (p = 0.027), whereas the NRAS mutations correlated with the BI (p = 0.01) and the mitotic index (p = 0.04). Here, we demonstrate that the "young" ddPCR technology is as effective as a CE-IVD marked real-time PCR method for detecting BRAF V600 hotspot mutations in tumor biopsies and recommend it for extended use in clinical settings. Moreover, ddPCR was able to detect low-frequency hotspot mutations, such as NRAS G12/G13, in our tissue specimens, which makes it a promising tool for investigating the mutational landscape of sun-damaged skin, benign nevi, and melanomas in more extensive clinical studies.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Doctoral School, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
| | - Luciana Nichita
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristiana Popp
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sabina Zurac
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Monica Neagu
- Doctoral School, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|