1
|
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B, Yu T. Dynamics of the oral microbiome during orthodontic treatment and antimicrobial advances for orthodontic appliances. iScience 2024; 27:111458. [PMID: 39720528 PMCID: PMC11667053 DOI: 10.1016/j.isci.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases. Undoubtedly, increased difficulty in oral hygiene maintenance and oral microbial disturbances are the main factors in developing these adverse effects. The present article briefly illustrates the characteristics of different ecological niches (including saliva, soft tissue surfaces of the oral mucosa, and hard tissue surfaces of the teeth) inhabited by oral microorganisms. According to the investigations conducted since 2014, we comprehensively elucidate the alterations of the oral microbiome in saliva, dental plaque, and other ecological niches after the introduction of orthodontic appliances. Finally, we provide a detailed review of recent advances in the antimicrobial properties of different orthodontic appliances. This article will provide researchers with a profound understanding of the underlying mechanisms of the effects of orthodontic appliances on human health and provide direction for further research on the antimicrobial properties of orthodontic appliances.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Yuntao Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| |
Collapse
|
2
|
Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Ziąbka M, Spagnuolo G, Woźniak K. Antimicrobial efficacy and bonding properties of orthodontic bonding systems enhanced with silver nanoparticles: a systematic review with meta-analysis. BMC Oral Health 2024; 24:1342. [PMID: 39501230 PMCID: PMC11536928 DOI: 10.1186/s12903-024-05127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
The aim of this systematic review was to assess the antimicrobial effectiveness of silver nanoparticles (AgNPs) incorporated to different orthodontic bonding systems. Additionally, the review investigated the impact of AgNPs on the bonding properties of these materials. The hypothesis posed that the addition of AgNPs would enhance the antimicrobial efficacy of orthodontic bonding systems while maintaining their bonding properties. The systematic review employed a PICO-based search strategy, targeting in vitro studies focusing on the integration of nano silver particles into orthodontic bonding systems with potential antimicrobial activity. The intervention involved the use of nano silver in orthodontic bonding systems, with a comparison to systems lacking nano silver. The primary outcomes assessed were antimicrobial activity and shear bond strength (SBS). The search process, conducted without publication date restrictions, yielded 551 potential articles: 34 from PubMed, 360 from PubMed Central, 42 from Embase, 54 from Scopus, and 61 from Web of Science. Ultimately, a qualitative synthesis was conducted on 13 papers. The PRISMA diagram, visually represented the search strategy, screening process, and inclusion criteria. The study protocol was registered in PROSPERO CRD42023487656 to enhance transparency and adherence to systematic review guidelines. Quality assessment of the included studies was performed using the Newcastle-Ottawa Scale, revealing that the 13 articles meeting the inclusion criteria demonstrated a high level of evidence. Seven studies were included in the meta-analysis regarding shear bond strength. In summary, the synthesized findings from these studies strongly underscore the promising potential of orthodontic materials modified with AgNPs. These materials exhibit effective resistance against cariogenic bacteria without compromising bonding properties below clinical acceptability. Such innovative materials hold significant implications for advancing oral health within the realm of orthodontics.
Collapse
Affiliation(s)
- Magdalena Sycińska-Dziarnowska
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland.
| | - Liliana Szyszka-Sommerfeld
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland
- Laboratory for Propaedeutics of Orthodontics and Facial Congenital Defects, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, Szczecin, 70111, Poland
| | - Magdalena Ziąbka
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Krakow, Krakow, 30059, Poland
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Napoli, 80131, Italy
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Krzysztof Woźniak
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
3
|
Mundada R, Tanpure SB, Mapare S, Karra A, Yannawar V, Gilani R. The Effect of Nanoparticles Against Streptococcus mutans in the Orthodontic Primer Used for Aligner Attachment: An In Vitro Study. Cureus 2024; 16:e68359. [PMID: 39355471 PMCID: PMC11443300 DOI: 10.7759/cureus.68359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Objective This study investigates the antimicrobial properties of silver (1%) and chitosan (1%) nanoparticles against Streptococcus mutans (S. mutans) when added to an orthodontic primer used for aligner attachments. While aligner treatments are becoming increasingly popular for their aesthetics and convenience, their attachments can create retention sites for bacteria, potentially leading to white spot lesions (WSLs). This in vitro study aims to address this issue by enhancing the antimicrobial efficacy of aligner primers. Methodology Thirty freshly extracted teeth were classified into the following three groups: Group A with the standard primer, Group B with chitosan nanoparticles mixed in the primer, and Group C with silver nanoparticles mixed in the primer. The samples were incubated with S. mutans and bacterial colonies were counted at 12, 24, 48, and 72 hours. Results The results showed a significant reduction in colony-forming units (CFUs) in the groups with nanoparticles compared to the control group, with silver nanoparticles exhibiting a higher antimicrobial effect than chitosan. Conclusions This study suggests that incorporating silver nanoparticles into orthodontic primers can effectively reduce bacterial growth, potentially improving oral hygiene and reducing the risk of WSLs in patients undergoing aligner treatment.
Collapse
Affiliation(s)
- Ram Mundada
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Saurabh B Tanpure
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Sagar Mapare
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Arjun Karra
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Vijay Yannawar
- Department of Orthodontics and Dentofacial Orthopedics, Dr. Hedgewar Smruti Rugna Seva Mandal's Dental College and Hospital, Hingoli, IND
| | - Rizwan Gilani
- Department of Orthodontics and Dentofacial Orthopedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Mejía-Méndez JL, Sánchez-Ante G, Cerro-López M, Minutti-Calva Y, Navarro-López DE, Lozada-Ramírez JD, Bach H, López-Mena ER, Sánchez-Arreola E. Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities. Biomolecules 2024; 14:782. [PMID: 39062496 PMCID: PMC11274660 DOI: 10.3390/biom14070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, the hexane, chloroform, and methanol extracts from Kalanchoe fedtschenkoi were utilized to green-synthesize silver nanoparticles (Kf1-, Kf2-, and Kf3-AgNPs). The Kf1-, Kf2-, and Kf3-AgNPs were characterized by spectroscopy and microscopy techniques. The antibacterial activity of AgNPs was studied against bacteria strains, utilizing the microdilution assay. The DPPH and H2O2 assays were considered to assess the antioxidant activity of AgNPs. The results revealed that Kf1-, Kf2-, and Kf3-AgNPs exhibit an average diameter of 39.9, 111, and 42 nm, respectively. The calculated ζ-potential of Kf1-, Kf2-, and Kf3-AgNPs were -20.5, -10.6, and -7.9 mV, respectively. The UV-vis analysis of the three samples demonstrated characteristic absorption bands within the range of 350-450 nm, which confirmed the formation of AgNPs. The FTIR analysis of AgNPs exhibited a series of bands from 3500 to 750 cm-1, related to the presence of extracts on their surfaces. SEM observations unveiled that Kf1- and Kf2-AgNPs adopted structural arrangements related to nano-popcorns and nanoflowers, whereas Kf3-AgNPs were spherical in shape. It was determined that treatment with Kf1-, Kf2-, and Kf3-AgNPs was demonstrated to inhibit the growth of E. coli, S. aureus, and P. aeruginosa in a dose-dependent manner (50-300 μg/mL). Within the same range, treatment with Kf1-, Kf2-, and Kf3-AgNPs decreased the generation of DPPH (IC50 57.02-2.09 μg/mL) and H2O2 (IC50 3.15-3.45 μg/mL) radicals. This study highlights the importance of using inorganic nanomaterials to improve the biological performance of plant extracts as an efficient nanotechnological approach.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Gildardo Sánchez-Ante
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - Mónica Cerro-López
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Yulianna Minutti-Calva
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Diego E. Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico; (G.S.-A.); (D.E.N.-L.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (M.C.-L.); (Y.M.-C.); (J.D.L.-R.)
| |
Collapse
|
5
|
An J, Shen X, Peng T, Qiao M, Xu B. Formulation of arginine-loaded mesoporous silica nanoparticles (Arg@MSNs) modified orthodontic adhesive. J Dent 2024; 145:104992. [PMID: 38599563 DOI: 10.1016/j.jdent.2024.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES The objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. METHODS Arg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. RESULTS TEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. CONCLUSIONS The novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. CLINICAL SIGNIFICANCE The novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.
Collapse
Affiliation(s)
- Jiali An
- Department of Orthodontics, Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao Shen
- Department of Orthodontics, Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tianhao Peng
- Department of Orthodontics, Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China; Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100193, China
| | - Min Qiao
- Department of Orthodontics, Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Baohua Xu
- Department of Orthodontics, Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China; Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
6
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
7
|
Qu Y, Lu X, Zhu T, Yu J, Zhang Z, Sun Y, Hao Y, Wang Y, Yu Y. Application of an Antibacterial Coating Layer via Amine-Terminated Hyperbranched Zirconium-Polysiloxane for Stainless Steel Orthodontic Brackets. IET Nanobiotechnol 2024; 2024:4391833. [PMID: 38863970 PMCID: PMC11095072 DOI: 10.1049/2024/4391833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 06/13/2024] Open
Abstract
The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 μm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 μg/mL HPZP@SST showed a better bactericidal ability than 400 μg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.
Collapse
Affiliation(s)
- Yaxin Qu
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang 261053, China
| | - Xinwei Lu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Jie Yu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yu Sun
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yanling Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| |
Collapse
|
8
|
Anishya D, Jain RK. Vanillin-Mediated Green-Synthesised Silver Nanoparticles' Characterisation and Antimicrobial Activity: An In-Vitro Study. Cureus 2024; 16:e51659. [PMID: 38318582 PMCID: PMC10839412 DOI: 10.7759/cureus.51659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background and aim Nanoparticles in general due to their enhanced antimicrobial effects and other beneficial effects are used in dentistry. Silver nanoparticles (AgNPs) have emerged as the metal nanoparticle with the most advantages among the many types. The objective of the study was to synthesise vanillin-mediated AgNPs, then characterise those nanoparticles and assess their antimicrobial effectiveness. Materials and methods One-step synthesis of stable and crystalline AgNPs was done with vanillin as the reducing and capping agent. After being crushed into powder form, the produced AgNPs were subjected to characterisation. A scanning electron Microscope SEM) analysis was done for morphological details of the AgNPs. SEM with energy dispersive X-ray spectroscopy analysis (EDAX) and Fourier transform infrared (FTIR) testing were done for elemental analysis. AgNPs' antimicrobial properties were tested using the agar well diffusion technique. Results The SEM analysis revealed that the synthesized AgNps were porous and agglomerative clusters and varied in sizes between 30-35 nm. SEM-EDAX revealed the presence of 76.2 weight (wt)% Ag, 4.9 wt% carbon, and 18.9 wt% of oxygen. FTIR prominent peaks were observed at 1431.97 cm and 1361.20 cm indicating the presence of AgNPs. Both low and high concentrations of AgNps showed good antimicrobial effects against Streptococcus mutans (S. mutans). Conclusion Vanillin can be successfully used as a reducing agent for creating AgNPs. Due to their effective antimicrobial activity against S.mutans at various concentrations, vanillin-mediated AgNPs can be used with dental materials to reduce the risk of dental caries and enamel demineralization.
Collapse
Affiliation(s)
- Daphane Anishya
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Arsene MMJ, Viktorovna PI, Alla M, Mariya M, Davares AKL, Carime BZ, Anatolievna GO, Vyacheslavovna YN, Vladimirovna ZA, Andreevna SL, Aleksandrovna VE, Alekseevich BL, Nikolaïevna BM, Parfait K, Andrey V. Antimicrobial activity of phytofabricated silver nanoparticles using Carica papaya L. against Gram-negative bacteria. Vet World 2023; 16:1301-1311. [PMID: 37577189 PMCID: PMC10421558 DOI: 10.14202/vetworld.2023.1301-1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Antibiotic resistance, especially in Gram-negative bacteria, is a major public health risk affecting all industries requiring the use of antibiotics, including agriculture and animal breeding. This study aimed to use papaya extracts to synthesize silver nanoparticles (AgNPs) and evaluate their antimicrobial activity against various Gram-negative bacteria. Materials and Methods Silver nanoparticles were synthesized from the aqueous extracts of papaya seed, root, and bark, with AgNO3 used as a reducing agent. The phytofabricated AgNPs were analyzed by ultraviolet-visible absorbance, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and photon cross-correlation spectroscopy (PCCS). The disc-diffusion method was used to perform antibacterial analysis, and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations were determined. We also investigated the antibiofilm activity of AgNPs and attempted to elucidate the potential mechanism of action on Escherichia coli ATCC 25922. Results Phytofabrication of AgNPs was successful with papaya root (PR-AgNPs) and papaya seed (PS-AgNPs), but not with papaya bark. Silver nanoparticles using papaya root and PS-AgNPs were both cubic and showed maximum absorbances of 2.6 and 0.3 AUs at 411.6 and 416.8 nm wavelengths and average hydrodynamic diameters X50 of 59.46 ± 7.03 and 66.57 ± 8.89 nm, respectively. The Ag in both AgNPs was confirmed by X-ray fluorescence by a distinctive peak in the spectrum at the silver Kα line of 22.105 keV. Both AgNPs exhibited broad-spectrum antimicrobial and antibiofilm activity against all Gram-negative bacteria, and PR-AgNPs were slightly better than AgNPs-PS. The MIC ranged from 16 μg/mL-128 μg/mL and 16 μg/mL-64 μg/mL, respectively, for PS-AgNPs and PR-AgNPs. The elucidation of the mechanism of action revealed interference with E. coli ATCC 25922 growth kinetics and inhibition of H+-ATPase proton pumps. Conclusion Papaya seed and root extracts were efficient reducing agents for the biogenic synthesis of AgNPs, with noteworthy antibacterial and antibiofilm activities. Future studies should be conducted to identify the phytochemicals and the mechanism involved in AgNPs synthesis.
Collapse
Affiliation(s)
- Mbarga Manga Joseph Arsene
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Podoprigora Irina Viktorovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Marukhlenko Alla
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Morozova Mariya
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Anyutoulou Kitio Linda Davares
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Bassa Zacharie Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Gizinger Oksana Anatolievna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Yashina Natalya Vyacheslavovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Zhigunova Anna Vladimirovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Smolyakova Larissa Andreevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vasilieva Elena Aleksandrovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Butusov Leonid Alekseevich
- Institute of Innovative Engineering Technologies, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Borekhova Marina Nikolaïevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Kezimana Parfait
- Department of Agrobiotechnology, Agrarian Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vodyashkin Andrey
- Institute of Biochemical Technology and Nanotechnology. RUDN University named after Patrice Lumumba, Moscow, Russia
| |
Collapse
|