1
|
Jeong Y, Kim H, You D, Cho SY, Yoon SY, Kim SW, Nam SJ, Lee JE, Kim S. Induction of SUSD2 by STAT3 Activation Is Associated with Tumor Recurrence in HER2-Positive Breast Cancer. Cells 2024; 14:19. [PMID: 39791720 PMCID: PMC11719728 DOI: 10.3390/cells14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Sushi domain-containing protein 2 (SUSD2), a transmembrane protein containing a sushi motif, has been reported to have tumor-promoting functions in various types of cancer, including breast cancer. However, the regulatory mechanism of SUSD2 and its function in HER2-positive (HER2+) breast cancer have not been fully identified as yet. In this study, we explored the potential of targeting SUSD2 to overcome trastuzumab (TRZ) resistance in HER2+ breast cancer. SUSD2 expression was found to be significantly increased in HER2-overexpressing cells. Endogenous SUSD2 expression was observed in HER2+ breast cancer cells but not in estrogen receptor-positive or triple-negative breast cancer cells. We also found that SUSD2 expression was positively correlated with HER2 expression in a publicly available human primary breast cancer dataset. Although SUSD2 expression was associated with HER2, its expression levels were not affected by TRZ. Through kinase array experiments, we found that SUSD2 expression was modulated downstream of STAT3-dependent signaling in breast cancer cells overexpressing HER2. STAT3 activity was increased in EGFR+ HER2+ breast cancer cells compared to EGFR+ cells. Furthermore, we observed that SUSD2 expression was decreased by C188-9, a STAT3-specific inhibitor. Finally, we analyzed the association between patient survival and SUSD2 expression in breast cancer. Our results showed that SUSD2 expression had a negative correlation with the relapse-free survival of patients with EGFR+ HER2+ breast cancer when compared to EGFR+ breast cancer patients. Collectively, our results demonstrate that SUSD2 expression is mediated by STAT3 and imply the potential of using SUSD2 as a biomarker to stratify HER2+ breast cancer.
Collapse
Affiliation(s)
- Yisun Jeong
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hyungjoo Kim
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daeun You
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Soo Youn Cho
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Sun Young Yoon
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seok Won Kim
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea; (Y.J.); (H.K.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
2
|
Wang XK, Yang X, Yao TH, Tao PX, Jia GJ, Sun DX, Yi L, Gu YH. Advances in immunotherapy of M2 macrophages and gastrointestinal stromal tumor. World J Gastrointest Oncol 2024; 16:2915-2924. [PMID: 39072184 PMCID: PMC11271800 DOI: 10.4251/wjgo.v16.i7.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal-derived tumors of the GI tract. They can occur throughout the GI tract, and the survival time of some patients can be improved by first-line targeted therapy with imatinib. However, there are some limitations with imatinib treatment. Immunotherapy for GIST has attracted much attention in recent years, and as one of the most abundant cells in the GIST microenvironment, M2 macrophages play an important role in disease progression. They have unique anti-inflammatory and pro-tumorigenic effects and are one target for immunotherapy. This review summarizes the connection between different factors and the programmed death receptor-1/programmed death ligand-1 pathway and M2 macrophages to reactivate or enhance anti-tumor immunity and improve imatinib efficacy, and to provide new ideas for GIST immunotherapy.
Collapse
Affiliation(s)
- Xiao-Ke Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xin Yang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Tong-Han Yao
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Peng-Xian Tao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Guan-Jun Jia
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - De-Xian Sun
- Graduate School, Qinghai University, Xining 810016, Qinghai Province, China
| | - Lin Yi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yuan-Hui Gu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
3
|
Jääskeläinen MM, Tumelius R, Hämäläinen K, Rilla K, Oikari S, Rönkä A, Selander T, Mannermaa A, Tiainen S, Auvinen P. High Numbers of CD163+ Tumor-Associated Macrophages Predict Poor Prognosis in HER2+ Breast Cancer. Cancers (Basel) 2024; 16:634. [PMID: 38339385 PMCID: PMC10854814 DOI: 10.3390/cancers16030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are associated with a poor outcome in breast cancer (BC), but their prognostic value in different BC subtypes has remained somewhat unclear. Here, we investigated the prognostic value of M2-like TAMs (CD163+) and all TAMs (CD68+) in a patient cohort of 278 non-metastatic BC patients, half of whom were HER2+ (n = 139). The survival endpoints investigated were overall survival (OS), breast cancer-specific survival (BCSS) and disease-free survival (DFS). In the whole patient cohort (n = 278), a high CD163+ TAM count and a high CD68+ TAM count were associated with a worse outcome (p ≤ 0.023). In HER2+ BC, a high CD163+ TAM count was an independent factor for a poor prognosis across all the investigated survival endpoints (p < 0.001). The prognostic effect was evident in both the HER2+/hormone receptor-positive (p < 0.001) and HER2+/hormone receptor-negative (p ≤ 0.012) subgroups and regardless of the provision of adjuvant trastuzumab (p ≤ 0.002). In HER2-negative BC, the CD163+ TAM count was not significantly associated with survival. These results suggest that a high CD163+ TAM count predicts an inferior outcome, especially in HER2+ BC patients, and as adjuvant trastuzumab did not overcome the poor prognostic effect, combination treatments including therapies targeting the macrophage function could represent an effective therapeutic approach in HER2+ BC.
Collapse
Affiliation(s)
- Minna M. Jääskeläinen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ritva Tumelius
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
| | - Kirsi Hämäläinen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aino Rönkä
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tuomas Selander
- Science Services Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Wellbeing Services County of North Savo, 700029 Kuopio, Finland
| | - Satu Tiainen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Elsebaie HA, El-Bastawissy EA, Elberembally KM, Khaleel EF, Badi RM, Shaldam MA, Eldehna WM, Tawfik HO, El-Moselhy TF. Novel 4-(2-arylidenehydrazineyl)thienopyrimidine derivatives as anticancer EGFR inhibitors: Design, synthesis, biological evaluation, kinome selectivity and in silico insights. Bioorg Chem 2023; 140:106799. [PMID: 37625210 DOI: 10.1016/j.bioorg.2023.106799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
The current study discovered fifteen new thieno[2,3-d]pyrimidine derivatives with potential anticancer action, including 5a-l, 6, and 7a-b. Results from the NCI screening revealed that compounds 5f-i and 7a significantly inhibited the proliferation of MDA-MB-468 cells at mean GI% and GI50 levels. Compared to staurosporine, these compounds (5f-i and 7a) demonstrated better safety towards typical WI-38 cells. Compounds 5g and 7a demonstrated the highest inhibition (two-digit nanomolar) when compared to erlotinib when their potency was tested on EGFR kinase. Considering the outcomes above, 5g was examined for its ability to disrupt the cell cycle with trigger apoptosis in breast cancer MDA-MB-468 cell lines. The apoptosis markers Bax, Bcl-2, Caspase-8, and Caspase-9, were detected. In silico molecular docking and dynamic simulation were used to explainthe biological activities of the most potent compound.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Eman A El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Kamel M Elberembally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia.
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| |
Collapse
|
5
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023:10.1038/s41423-023-01013-0. [PMID: 37208442 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|