1
|
Liu Y. Alzheimer's disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging. Mol Biol Rep 2024; 51:121. [PMID: 38227160 DOI: 10.1007/s11033-023-09162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss, neurodegeneration, and cognitive decline. Aging is one of the risk factors for AD. Although the mechanisms underlying aging and the incidence rate of AD are unclear, aging and AD share some hallmarks, such as oxidative stress and chronic inflammation. Cannabidiol (CBD), the major non-psychoactive phytocannabinoid extracted from Cannabis sativa, has recently emerged as a potential candidate for delaying aging and a valuable therapeutic tool for the treatment of aging-related neurodegenerative diseases due to its antioxidant and anti-inflammation properties. This article reviews the relevant literature on AD, CBD treatment for AD, cellular senescence, aging, and CBD treatment for aging in recent years. By analyzing these published data, we attempt to explore the complex correlation between cellular senescence, aging, and Alzheimer's disease, clarify the positive feedback effect between the senescence of neurocytes and Alzheimer's disease, and summarize the role and possible molecular mechanisms of CBD in preventing aging and treating AD. These data may provide new ideas on how to effectively prevent and delay aging, and develop effective treatment strategies for age-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Medicine, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
2
|
Chadaeva IV, Filonov SV, Zolotareva KA, Khandaev BM, Ershov NI, Podkolodnyy NL, Kozhemyakina RV, Rasskazov DA, Bogomolov AG, Kondratyuk EY, Klimova NV, Shikhevich SG, Ryazanova MA, Fedoseeva LA, Redina ОЕ, Kozhevnikova OS, Stefanova NA, Kolosova NG, Markel AL, Ponomarenko MP, Oshchepkov DY. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research. Vavilovskii Zhurnal Genet Selektsii 2023; 27:794-806. [PMID: 38213701 PMCID: PMC10777291 DOI: 10.18699/vjgb-23-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
The animal models used in biomedical research cover virtually every human disease. RatDEGdb, a knowledge base of the differentially expressed genes (DEGs) of the rat as a model object in biomedical research is a collection of published data on gene expression in rat strains simulating arterial hypertension, age-related diseases, psychopathological conditions and other human afflictions. The current release contains information on 25,101 DEGs representing 14,320 unique rat genes that change transcription levels in 21 tissues of 10 genetic rat strains used as models of 11 human diseases based on 45 original scientific papers. RatDEGdb is novel in that, unlike any other biomedical database, it offers the manually curated annotations of DEGs in model rats with the use of independent clinical data on equal changes in the expression of homologous genes revealed in people with pathologies. The rat DEGs put in RatDEGdb were annotated with equal changes in the expression of their human homologs in affected people. In its current release, RatDEGdb contains 94,873 such annotations for 321 human genes in 836 diseases based on 959 original scientific papers found in the current PubMed. RatDEGdb may be interesting first of all to human geneticists, molecular biologists, clinical physicians, genetic advisors as well as experts in biopharmaceutics, bioinformatics and personalized genomics. RatDEGdb is publicly available at https://www.sysbio.ru/RatDEGdb.
Collapse
Affiliation(s)
- I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Filonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - K A Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B M Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N L Podkolodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Kondratyuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - N V Klimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Ryazanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Fedoseeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О Е Redina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Stefanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A L Markel
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M P Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D Yu Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Burnyasheva AO, Stefanova NA, Kolosova NG, Telegina DV. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer's Disease Signs Development. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1972-1986. [PMID: 38462444 DOI: 10.1134/s0006297923120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.
Collapse
Affiliation(s)
- Alena O Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Rudnitskaya E, Kozlova T, Burnyasheva A, Peunov D, Tyumentsev M, Stefanova N, Kolosova N. Postnatal Maturation of the Blood-Brain Barrier in Senescence-Accelerated OXYS Rats, Which Are Prone to an Alzheimer's Disease-like Pathology. Int J Mol Sci 2023; 24:15649. [PMID: 37958635 PMCID: PMC10648128 DOI: 10.3390/ijms242115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is an old-age neurodegenerative disorder; however, AD predisposition may arise early in life. Vascular dysfunction makes a big contribution to AD development. Nonetheless, the possible role of early-life vascular dysfunction in AD development is still poorly investigated. Here, using OXYS rats as a suitable model of the most common (sporadic) type of AD, we investigated maturation of the blood-brain barrier (BBB) in the hippocampus and frontal cortex in the first 3 weeks of life. Using RNA-Seq data, we found an altered expression of BBB-associated genes in the middle of the first and second weeks of life in OXYS rats compared to control rats (Wistar strain). Moreover, by immunohistochemistry and electronic microscopy, we revealed a delay of vascularization and of subsequent pericyte coating of blood vessels in OXYS rats. These specific features were accompanied by an accelerated decrease in BBB permeability estimated using Evans blue dye. Notably, almost all of the observed differences from Wistar rats disappeared on postnatal day 20. Nonetheless, the observed features, which are characteristic of the postnatal period, may have long-term consequences and contribute to neurovascular dysfunction observed in OXYS rats late in life, thereby promoting early development of AD signs.
Collapse
Affiliation(s)
- Ekaterina Rudnitskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (T.K.); (A.B.); (D.P.); (M.T.); (N.S.); (N.K.)
| | | | | | | | | | | | | |
Collapse
|