1
|
Marsland M, Jiang CC, Faulkner S, Steigler A, McEwan K, Jobling P, Oldmeadow C, Delahunt B, Denham JW, Hondermarck H. CCL2/CCR2 Expression in Locally Advanced Prostate Cancer and Patient Long-Term Outcome: 10-Year Results from the TROG 03.04 RADAR Trial. Cancers (Basel) 2024; 16:2794. [PMID: 39199567 PMCID: PMC11352466 DOI: 10.3390/cancers16162794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the prognostic value of the chemokine C-C motif ligand 2 (CCL2) and its receptor C-C motif chemokine receptor 2 (CCR2) expression in locally advanced prostate cancer treated with radiotherapy and androgen deprivation using the 10-year outcome data from the TROG 03.04 RADAR clinical trial. CCL2 and CCR2 protein expression in prostate cancer biopsies at the time of diagnosis were quantified by immunohistochemistry and digital quantification. CCR2 protein expression was detected in prostate cancer cells and was associated with prostate-specific antigen serum concentration (p = 0.045). However, neither CCL2 nor CCR2 tissue expression could predict prostate cancer progression, or other clinicopathological parameters including perineural invasion and patient outcome. In serum samples, CCL2 concentration at the time of diagnosis, as assayed by enzyme-linked immunosorbent assay, was significantly higher in patients with prostate cancer compared with benign prostatic hyperplasia (median difference 0.22 ng/mL, 95% CI, 0.17-0.30) (p < 0.0001) and normal controls (median difference 0.13 ng/mL, 95% CI, 0.13-0.17) (p < 0.0001). However, circulating CCL2 was not statistically significant as a predictor of disease progression and patient outcome. In conclusion, this study shows that although CCL2 and CCR2 are expressed in prostate cancer, with an increased level of CCL2 in the serum, neither CCL2 nor CCR2 expression has a clinical prognostic value in locally advanced prostate cancer.
Collapse
Affiliation(s)
- Mark Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Allison Steigler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
| | - Kristen McEwan
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Christopher Oldmeadow
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine and Health Sciences, University of Otago, 6021 Wellington, New Zealand
| | - James W. Denham
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.M.); (C.C.J.); (S.F.); (A.S.); (P.J.)
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Benzaquen D, Lawrence YR, Taussky D, Zwahlen D, Oehler C, Champion A. The Crosstalk between Nerves and Cancer-A Poorly Understood Phenomenon and New Possibilities. Cancers (Basel) 2024; 16:1875. [PMID: 38791953 PMCID: PMC11120349 DOI: 10.3390/cancers16101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Crosstalk occurs between nerve and cancer cells. These interactions are important for cancer homeostasis and metabolism. Nerve cells influence the tumor microenvironment (TME) and participate in metastasis through neurogenesis, neural extension, and axonogenesis. We summarized the past and current literature on the interaction between nerves and cancer, with a special focus on pancreatic ductal adenocarcinoma (PDAC), prostate cancer (PCa), and the role of the nerve growth factor (NGF) in cancer. MATERIALS/METHODS We reviewed PubMed and Google Scholar for the relevant literature on the relationship between nerves, neurotrophins, and cancer in general and specifically for both PCa and PDAC. RESULTS The NGF helped sustain cancer cell proliferation and evade immune defense. It is a neuropeptide involved in neurogenic inflammation through the activation of several cells of the immune system by several proinflammatory cytokines. Both PCa and PDAC employ different strategies to evade immune defense. The prostate is richly innervated by both the sympathetic and parasympathetic nerves, which helps in both growth control and homeostasis. Newly formed autonomic nerve fibers grow into cancer cells and contribute to cancer initiation and progression through the activation of β-adrenergic and muscarinic cholinergic signaling. Surgical or chemical sympathectomy prevents the development of prostate cancer. Beta-blockers have a high therapeutic potential for cancer, although current clinical data have been contradictory. With a better understanding of the beta-receptors, one could identify specific receptors that could have an effect on prostate cancer development or act as therapeutic agents. CONCLUSION The bidirectional crosstalk between the nervous system and cancer cells has emerged as a crucial regulator of cancer and its microenvironment. Denervation has been shown to be promising in vitro and in animal models. Additionally, there is a potential relationship between cancer and psychosocial biology through neurotransmitters and neurotrophins.
Collapse
Affiliation(s)
- David Benzaquen
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
| | - Yaacov R. Lawrence
- Department of Radiation Oncology, Sheba Medical Center, Tel-Aviv 39040, Israel;
| | - Daniel Taussky
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0C1, Canada
| | - Daniel Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8400 Winterthur, Switzerland; (D.Z.); (C.O.)
| | - Christoph Oehler
- Department of Radiation Oncology, Kantonsspital Winterthur, 8400 Winterthur, Switzerland; (D.Z.); (C.O.)
| | - Ambroise Champion
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
| |
Collapse
|
3
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Marsland M, Dowdell A, Faulkner S, Gedye C, Lynam J, Griffin CP, Marsland J, Jiang CC, Hondermarck H. The Membrane Protein Sortilin Is a Potential Biomarker and Target for Glioblastoma. Cancers (Basel) 2023; 15:cancers15092514. [PMID: 37173980 PMCID: PMC10177035 DOI: 10.3390/cancers15092514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a devastating brain cancer with no effective treatment, and there is an urgent need for developing innovative biomarkers as well as therapeutic targets for better management of the disease. The membrane protein sortilin has recently been shown to participate in tumor cell invasiveness in several cancers, but its involvement and clinical relevance in GBM is unclear. In the present study, we explored the expression of sortilin and its potential as a clinical biomarker and therapeutic target for GBM. Sortilin expression was investigated by immunohistochemistry and digital quantification in a series of 71 clinical cases of invasive GBM vs. 20 non-invasive gliomas. Sortilin was overexpressed in GBM and, importantly, higher expression levels were associated with worse patient survival, pointing to sortilin tissue expression as a potential prognostic biomarker for GBM. Sortilin was also detectable in the plasma of GBM patients by enzyme-linked immunosorbent assay (ELISA), but no differences were observed between sortilin levels in the blood of GBM vs. glioma patients. In vitro, sortilin was detected in 11 brain-cancer-patient-derived cell lines at the anticipated molecular weight of 100 kDa. Interestingly, targeting sortilin with the orally bioavailable small molecule inhibitor AF38469 resulted in decreased GBM invasiveness, but cancer cell proliferation was not affected, showing that sortilin is targetable in GBM. Together, these data suggest the clinical relevance for sortilin in GBM and support further investigation of GBM as a clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Mark Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Amiee Dowdell
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Craig Gedye
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, NSW 2298, Australia
| | - James Lynam
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, NSW 2298, Australia
| | - Cassandra P Griffin
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Hunter Cancer Biobank, NSW Regional Biospecimen and Research Services, University of Newcastle, Callaghan, NSW 2305, Australia
| | - Joanne Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|