1
|
Graham AS, Patel F, Little F, van der Kouwe A, Kaba M, Holmes MJ. Using short-read 16S rRNA sequencing of multiple variable regions to generate high-quality results to a species level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.591068. [PMID: 38798511 PMCID: PMC11118338 DOI: 10.1101/2024.05.13.591068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Short-read amplicon sequencing studies have typically focused on 1-2 variable regions of the 16S rRNA gene. Species-level resolution is limited in these studies, as each variable region enables the characterisation of a different subsection of the microbiome. Although long-read sequencing techniques take advantage of all 9 variable regions by sequencing the entire 16S rRNA gene, they are substantially more expensive. This work assessed the feasibility of accurate species-level resolution and reproducibility using a relatively new sequencing kit and bioinformatics pipeline developed for short-read sequencing of multiple variable regions of the 16S rRNA gene. In addition, we evaluated the potential impact of different sample collection methods on our outcomes. Methods Using xGen™ 16S Amplicon Panel v2 kits, sequencing of all 9 variable regions of the 16S rRNA gene was carried out on an Illumina MiSeq platform. Mock cells and mock DNA for 8 bacterial species were included as extraction and sequencing controls respectively. Within-run and between-run replicate samples, and pairs of stool and rectal swabs collected at 0-5 weeks from the same participants, were incorporated. Observed relative abundances of each species were compared to theoretical abundances provided by ZymoBIOMICS. Paired Wilcoxon rank sum tests and distance-based intraclass correlation coefficients were used to statistically compare alpha and beta diversity measures, respectively, for pairs of replicates and stool/rectal swab sample pairs. Results Using multiple variable regions of the 16S ribosomal Ribonucleic Acid (rRNA) gene, we found that we could accurately identify taxa to a species level and obtain highly reproducible results at a species level. Yet, the microbial profiles of stool and rectal swab sample pairs differed substantially despite being collected concurrently from the same infants. Conclusion This protocol provides an effective means for studying infant gut microbial samples at a species level. However, sample collection approaches need to be accounted for in any downstream analysis.
Collapse
Affiliation(s)
- Amy S Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Fadheela Patel
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre van der Kouwe
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
2
|
Ritz NL, Brocka M, Butler MI, Cowan CSM, Barrera-Bugueño C, Turkington CJR, Draper LA, Bastiaanssen TFS, Turpin V, Morales L, Campos D, Gheorghe CE, Ratsika A, Sharma V, Golubeva AV, Aburto MR, Shkoporov AN, Moloney GM, Hill C, Clarke G, Slattery DA, Dinan TG, Cryan JF. Social anxiety disorder-associated gut microbiota increases social fear. Proc Natl Acad Sci U S A 2024; 121:e2308706120. [PMID: 38147649 PMCID: PMC10769841 DOI: 10.1073/pnas.2308706120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 12/28/2023] Open
Abstract
Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.
Collapse
Affiliation(s)
- Nathaniel L. Ritz
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Marta Brocka
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Mary I. Butler
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Caitlin S. M. Cowan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Camila Barrera-Bugueño
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Christopher J. R. Turkington
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Lorraine A. Draper
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Thomaz F. S. Bastiaanssen
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Valentine Turpin
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Lorena Morales
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - David Campos
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Cassandra E. Gheorghe
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Anna Ratsika
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Virat Sharma
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Maria R. Aburto
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Andrey N. Shkoporov
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard M. Moloney
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - David A. Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt60528, Germany
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| |
Collapse
|
3
|
Lana D, Giovannini MG. The Microbiota-Gut-Brain Axis in Behaviour and Brain Disorders. Int J Mol Sci 2023; 24:ijms24108460. [PMID: 37239807 DOI: 10.3390/ijms24108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The gut, along with its microbiota (MB-gut), is the largest absorption organ and reservoir of bacteria in the human body [...].
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|