1
|
Wei B, Cao S, Zhang G, Wang H, Cao Z, Chen Q, Niu C. Citrus Fruits Produce Direct Defense Responses against Oviposition by Bactrocera minax (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23736-23746. [PMID: 39257316 DOI: 10.1021/acs.jafc.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plants perceive and orchestrate defense responses when herbivorous insects are ovipositing. Fruits, as a crucial reproductive organ in plants, have rarely been researched on the responses to insect eggs. Here, we found that oviposition by the specialist insect Bactrocera minax in navel oranges activated the lignin synthesis pathway and cell division, causing mechanical pressure that crushed the eggs. Transcriptome and metabolome analyses revealed an enrichment of oviposition-induced genes and metabolites within the lignin synthesis pathway, which was confirmed by histochemical staining. Furthermore, hydrogen peroxide (H2O2) accumulation was observed at the oviposition sites. Plant defense-related hormones jasmonic acid (JA) and salicylic acid (SA) exhibited rapid induction after oviposition, while indole-3-acetic acid (IAA) activation occurred in the later stages of oviposition. Additionally, secondary metabolites induced by prior egg deposition were found to influence larval performance. Our studies provide molecular evidence that host fruits have evolved defense mechanisms against insect eggs and pave the way for future development of insect-resistant citrus varieties.
Collapse
Affiliation(s)
- Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoran Chen
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
3
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Barbero F, Maffei ME. Recent Advances in Plant-Insect Interactions. Int J Mol Sci 2023; 24:11338. [PMID: 37511097 PMCID: PMC10379450 DOI: 10.3390/ijms241411338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Plant-insect interaction is a fast-developing research field that continues to increase the interest of numerous scientists, many of whom come from heterogeneous backgrounds [...].
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13-1023 Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|