1
|
Liu Q, Li X, Sun Y, Wang Z, Zhang J. Novel theoretical database-assisted UHPLC-Q-TOF/MS strategy for profiling and identifying oxidized triglycerides in pharmaceutical excipient soybean oil. J Pharm Biomed Anal 2024; 249:116380. [PMID: 39067279 DOI: 10.1016/j.jpba.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical excipient soybean oil is widely used in injections. Its main components, triglycerides, are easily oxidized due to their unsaturated fatty acyls, raising safety concerns. However, it is hard to analyze those oxidized triglycerides due to their diverse compositions and low abundance. In this study, all theoretical oxidized triglycerides were predicted and a database consisting of 329 oxidized triglycerides was constructed. Then, a novel theoretical database-assisted ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) strategy was developed to finely profile and identify oxidized triglycerides in soybean oil. A total of 106 and 116 oxidized triglycerides were identified and relatively quantified in oxidized soybean oil and long-term stored soybean oil and preparations. It was found that oxidized triglycerides containing carbonyl groups were significantly more prevalent than other forms and oxidized triglycerides with two oxidized fatty acyl chains had the highest relative abundance. Fifteen markers indicating the oxidation of soybean oil were discovered. This strategy could rapidly and directly analyze the oxidized triglycerides and assign their fatty acyl compositions for the first time. This study will improve the quality control of soybean oil and its preparations.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjian Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
3
|
Petra de Oliveira Barros V, Macedo Silva JR, Maciel Melo VM, Terceiro PS, Nunes de Oliveira I, Duarte de Freitas J, Francisco da Silva Moura O, Xavier de Araújo-Júnior J, Erlanny da Silva Rodrigues E, Maraschin M, Thompson FL, Landell MF. Biosurfactants production by marine yeasts isolated from zoanthids and characterization of an emulsifier produced by Yarrowia lipolytica LMS 24B. CHEMOSPHERE 2024; 355:141807. [PMID: 38552803 DOI: 10.1016/j.chemosphere.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.
Collapse
Affiliation(s)
- Vitória Petra de Oliveira Barros
- Graduate Program in Genetics. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Vânia Maria Maciel Melo
- Department of Biology, Microbial Ecology and Biotechnology Laboratory (Lembiotech), Fortaleza, CE, Brazil
| | | | | | | | | | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
4
|
Gonçalves JDP, Gasparini K, Picoli EADT, Costa MDBL, Araujo WL, Zsögön A, Ribeiro DM. Metabolic control of seed germination in legumes. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154206. [PMID: 38452650 DOI: 10.1016/j.jplph.2024.154206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Seed development, dormancy, and germination are connected with changes in metabolite levels. Not surprisingly, a complex regulatory network modulates biosynthesis and accumulation of storage products. Seed development has been studied profusely in Arabidopsis thaliana and has provided valuable insights into the genetic control of embryo development. However, not every inference applies to crop legumes, as these have been domesticated and selected for high seed yield and specific metabolic profiles and fluxes. Given its enormous economic relevance, considerable work has contributed to shed light on the mechanisms that control legume seed growth and germination. Here, we summarize recent progress in the understanding of regulatory networks that coordinate seed metabolism and development in legumes.
Collapse
Affiliation(s)
- Júlia de Paiva Gonçalves
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | | | - Wagner Luiz Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Ramlal A, Nautiyal A, Lal S, Chigeza G. Editorial: A wonder legume, soybean: prospects for improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1294185. [PMID: 37964996 PMCID: PMC10641011 DOI: 10.3389/fpls.2023.1294185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Affiliation(s)
- Ayyagari Ramlal
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Malaysia
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Aparna Nautiyal
- Department of Botany, Deshbandhu College, University of Delhi, Delhi, India
| | - S.K. Lal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Godfree Chigeza
- Soybean Breeder, International Institute of Tropical Agriculture (IITA) Zambia, Lusaka, Zambia
| |
Collapse
|
7
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
8
|
Hu Q, Wu J, Qin Z, Wei X, Jiang C, Wu M, Yu D, Wang J. Effective Detergency Determination for Single Polymeric Fibers Using Confocal Microscopy. Polymers (Basel) 2023; 15:3314. [PMID: 37571208 PMCID: PMC10422291 DOI: 10.3390/polym15153314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Detergency determination for single polymeric fibers is of significant importance to screening effective detergents for laundry, but remains challenging. Herein, we demonstrate a novel and effective method to quantify the detergency for single polymeric fibers using a confocal laser scanning microscope (CLSM). It was applied to visualize the oil-removing process of single polymeric fibers and thus assess the detergency of various detergents. Four typical surfactants were selected for comparison, and a compounded detergent containing multiple components (e.g., anionic and nonionic surfactants, enzymes) was demonstrated to be the most effective and powerful soil-removing detergent because more than 50% of oil on the cotton fiber could be easily removed. Moreover, the oil removal process of three kinds of fibers (i.e., cotton, viscose, and polyester) was imaged and monitored by confocal microscopy. It was found that the percentage of the detergency of a single polyester fiber exceeded 70%, which is much higher than that of cotton and viscose fibers (~50%), which may be due to its relatively smooth surface. Compared to traditional methods, the CLSM imaging method is more feasible and effective to determine the detergency of detergents for single polymeric fibers.
Collapse
Affiliation(s)
- Qian Hu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
- Zheijiang Sci-Tech University Xiangshan Research Institute, Ningbo 315700, China
| | - Jindan Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
| | - Zhiqiang Qin
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
| | - Xuanxiang Wei
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
| | - Chenchen Jiang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
| | - Minghua Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
- Zheijiang Sci-Tech University Xiangshan Research Institute, Ningbo 315700, China
| | - Deyou Yu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China (J.W.)
- Zheijiang Sci-Tech University Xiangshan Research Institute, Ningbo 315700, China
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
9
|
Han T, Shao Y, Gao R, Gao J, Jiang Y, Yang Y, Wang Y, Yang S, Gao X, Wang L, Li Y. Functional Characterization of a ( E)-β-Ocimene Synthase Gene Contributing to the Defense against Spodoptera litura. Int J Mol Sci 2023; 24:ijms24087182. [PMID: 37108345 PMCID: PMC10139113 DOI: 10.3390/ijms24087182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Soybean is a worldwide crop that offers valuable proteins, fatty acids, and phytonutrients to humans but is always damaged by insect pests or pathogens. Plants have captured sophisticated defense mechanisms in resisting the attack of insects and pathogens. How to protect soybean in an environment- or human-friendly way or how to develop plant-based pest control is a hotpot. Herbivore-induced plant volatiles that are released by multiple plant species have been assessed in multi-systems against various insects, of which (E)-β-ocimene has been reported to show anti-insect function in a variety of plants, including soybean. However, the responsible gene in soybean is unknown, and its mechanism of synthesis and anti-insect properties lacks comprehensive assessment. In this study, (E)-β-ocimene was confirmed to be induced by Spodoptera litura treatment. A plastidic localized monoterpene synthase gene, designated as GmOCS, was identified to be responsible for the biosynthesis of (E)-β-ocimene through genome-wide gene family screening and in vitro and in vivo assays. Results from transgenic soybean and tobacco confirmed that (E)-β-ocimene catalyzed by GmOCS had pivotal roles in repelling a S. litura attack. This study advances the understanding of (E)-β-ocimene synthesis and its function in crops, as well as provides a good candidate for further anti-insect soybean improvement.
Collapse
Affiliation(s)
- Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yan Shao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- College of Plant Science, Jilin University, Changchun 130024, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yu Jiang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yue Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Siqi Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|