1
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
2
|
Berthault C, Gaucher S, Gouin O, Schmitt A, Chen M, Woodley D, Titeux M, Hovnanian A, Izmiryan A. Highly Efficient Ex Vivo Correction of COL7A1 through Ribonucleoprotein-Based CRISPR/Cas9 and Homology-Directed Repair to Treat Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1322-1333.e13. [PMID: 38043638 DOI: 10.1016/j.jid.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare and severe genetic skin disease responsible for blistering of the skin and mucosa after minor trauma. RDEB is caused by a wide variety of variants in COL7A1 encoding type VII Collagen, the major component of anchoring fibrils that form key attachment structures for dermal-epidermal adherence. In this study, we achieved highly efficient COL7A1 editing in primary RDEB keratinocytes and fibroblasts from 2 patients homozygous for the c.6508C>T (p.Gln2170∗) variant through CRISPR/Cas9-mediated homology-directed repair. Three guide RNAs targeting the c.6508C>T variant or harboring sequences were delivered together with high-fidelity Cas9 as a ribonucleoprotein complex. Among them, one achieved 73% cleavage activity in primary RDEB keratinocytes and RDEB fibroblasts. Then, we treated RDEB keratinocytes and RDEB fibroblasts with this specific ribonucleoprotein complex and the corresponding donor template delivered as single-stranded oligodeoxynucleotide and achieved up to 58% of genetic correction as well as type VII Collagen rescue. Finally, grafting of corrected 3-dimensional skin onto nude mice induced re-expression and normal localization of type VII Collagen as well as anchoring fibril formation at the dermal-epidermal junction 5 and 10 weeks after grafting. With this promising nonviral approach, we achieved therapeutically relevant specific gene editing that could be applicable to all variants in exon 80 of COL7A1 in primary RDEB cells.
Collapse
Affiliation(s)
- Camille Berthault
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France
| | - Sonia Gaucher
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France
| | - Olivier Gouin
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France
| | - Alain Schmitt
- Electronic Microscopy Facility, INSERM UMR 1016, Cochin Institute, Paris, France
| | - Mei Chen
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David Woodley
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France; Department of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Araksya Izmiryan
- INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, Paris, France; Paris Cité University, Paris, France.
| |
Collapse
|
3
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
4
|
Brooks IR, Alrokh Y, Kazemizadeh A, Balon K, Newby G, Liu DR, Łaczmański Ł, McGrath JA, Jacków-Malinowska J. Highly efficient biallelic correction of homozygous COL7A1 mutation using ABE8e adenine base editor. Br J Dermatol 2024; 190:583-585. [PMID: 38149684 DOI: 10.1093/bjd/ljad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 01/13/2024] [Indexed: 12/28/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin disorder characterized by severe skin blistering. With no cure at present, we have pursued a gene repair approach using base editing of COL7A1. Following on from our previous report of highly efficient base editing using the novel base editor, ABE8e, here we explore the use of lipid nanoparticle (LNP)-based delivery systems instead of electroporation to effect base editing in RDEB fibroblasts and correct a missense G > A mutation. We demonstrate increasingly high editing efficiencies, averaging 90%, which vary with the ABE8e dosage. We then demonstrate the viability of topical delivery of mRNA encapsulated in an LNP. Our work underscores the translational potential of this therapeutic route for DEB.
Collapse
Affiliation(s)
- Imogen R Brooks
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara Alrokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Aidin Kazemizadeh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Katarzyna Balon
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Gregory Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
5
|
Sheriff A, Jacków-Malinowska J. Advanced gene-editing strategy for epidermolysis bullosa simplex. Mol Ther 2024; 32:271-272. [PMID: 38266650 PMCID: PMC10862013 DOI: 10.1016/j.ymthe.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Adam Sheriff
- St John's Institute of Dermatology, King's College London, London, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Koller U. Gene therapy advances shine the spotlight on epidermolysis bullosa, bringing hope to patients. Mol Ther 2023; 31:1860-1861. [PMID: 37369206 PMCID: PMC10362411 DOI: 10.1016/j.ymthe.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|