1
|
Xu K, Zhang Y, Shi Y, Zhang Y, Zhang C, Wang T, Lv P, Bai Y, Wang S. Circadian rhythm disruption: a potential trigger in Parkinson's disease pathogenesis. Front Cell Neurosci 2024; 18:1464595. [PMID: 39539340 PMCID: PMC11557417 DOI: 10.3389/fncel.2024.1464595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), abnormal accumulation of α-synuclein (α-syn), and activation of microglia leading to neuroinflammation. Disturbances in circadian rhythm play a significant role in PD, with most non-motor symptoms associated with disruptions in circadian rhythm. These disturbances can be observed years before motor symptoms appear and are marked by the emergence of non-motor symptoms related to PD, such as rapid eye movement sleep behavior disorder (RBD), restless leg syndrome (RLS), excessive daytime sleepiness (EDS), depression and anxiety, changes in blood pressure, gastrointestinal dysfunction, and urinary problems. Circadian rhythm disruption precedes the onset of motor symptoms and contributes to the progression of PD. In brief, this article outlines the role of circadian rhythm disruption in triggering PD at cellular and molecular levels, as well as its clinical manifestations. It also explores how circadian rhythm research can contribute to preventing the onset and progression of PD from current and future perspectives.
Collapse
Affiliation(s)
- Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yu Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue Shi
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yake Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengguang Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Tianjiao Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Peizhu Lv
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shun Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wagner PM, Salgado MA, Turani O, Fornasier SJ, Salvador GA, Smania AM, Bouzat C, Guido ME. Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution. Cell Mol Life Sci 2024; 81:348. [PMID: 39136766 PMCID: PMC11335272 DOI: 10.1007/s00018-024-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Mauricio A Salgado
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ornella Turani
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Santiago J Fornasier
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela A Salvador
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cecilia Bouzat
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Wagner PM, Fornasier SJ, Guido ME. Pharmacological Modulation of the Cytosolic Oscillator Affects Glioblastoma Cell Biology. Cell Mol Neurobiol 2024; 44:51. [PMID: 38907776 PMCID: PMC11193694 DOI: 10.1007/s10571-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The circadian system is a conserved time-keeping machinery that regulates a wide range of processes such as sleep/wake, feeding/fasting, and activity/rest cycles to coordinate behavior and physiology. Circadian disruption can be a contributing factor in the development of metabolic diseases, inflammatory disorders, and higher risk of cancer. Glioblastoma (GBM) is a highly aggressive grade 4 brain tumor that is resistant to conventional therapies and has a poor prognosis after diagnosis, with a median survival of only 12-15 months. GBM cells kept in culture were shown to contain a functional circadian oscillator. In seeking more efficient therapies with lower side effects, we evaluated the pharmacological modulation of the circadian clock by targeting the cytosolic kinases glycogen synthase kinase-3 (GSK-3) and casein kinase 1 ε/δ (CK1ε/δ) with specific inhibitors (CHIR99021 and PF670462, respectively), the cryptochrome protein stabilizer (KL001), or circadian disruption after Per2 knockdown expression in GBM-derived cells. CHIR99021-treated cells had a significant effect on cell viability, clock protein expression, migration, and cell cycle distribution. Moreover, cultures exhibited higher levels of reactive oxygen species and alterations in lipid droplet content after GSK-3 inhibition compared to control cells. The combined treatment of CHIR99021 with temozolomide was found to improve the effect on cell viability compared to temozolomide therapy alone. Per2 disruption affected both GBM migration and cell cycle progression. Overall, our results suggest that pharmacological modulation or molecular clock disruption severely affects GBM cell biology.
Collapse
Affiliation(s)
- Paula M Wagner
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Santiago J Fornasier
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Chen K, Wang Y, Li D, Wu R, Wang J, Wei W, Zhu W, Xie W, Feng D, He Y. Biological clock regulation by the PER gene family: a new perspective on tumor development. Front Cell Dev Biol 2024; 12:1332506. [PMID: 38813085 PMCID: PMC11133573 DOI: 10.3389/fcell.2024.1332506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| |
Collapse
|
5
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
6
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|