1
|
Aljubran F, Schumacher K, Graham A, Gunewardena S, Marsh C, Lydic M, Holoch K, Nothnick WB. Uterine cyclin A2-deficient mice as a model of female early pregnancy loss. J Clin Invest 2024; 134:e163796. [PMID: 39264721 PMCID: PMC11563677 DOI: 10.1172/jci163796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Proper action of the female sex steroids 17β-estradiol (E2) and progesterone (P4) on the endometrium is essential for fertility. Beyond its role in regulating the cell cycle, cyclin A2 (CCNA2) also mediates E2 and P4 signaling in vitro, but a potential role in modulating steroid action for proper endometrial tissue development and function is unknown. To fill this gap in our knowledge, we examined human endometrial tissue from fertile and infertile cisgender women for CCNA2 expression and correlated this with pregnancy outcome. Functional assessment of CCNA2 was validated in vivo using a conditional Ccna2 uterine-deficient mouse model, while in vitro function was assessed using human cell culture models. We found that CCNA2 expression was significantly reduced in endometrial tissue, specifically the stromal cells, from women undergoing in vitro fertilization who failed to achieve pregnancy. Conditional deletion of Ccna2 from mouse uterine tissue resulted in an inability to achieve pregnancy, which appeared to be due to alterations in the process of decidualization, which was confirmed using in vitro models. From these studies, we conclude that CCNA2 expression during the proliferative/regenerative stage of the menstrual cycle allows for proper steroid responsiveness, decidualization, and pregnancy. When CCNA2 expression levels are insufficient, there is impaired endometrial responsiveness, aberrant decidualization, and loss of pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Marsh
- Department of Cell Biology and Physiology
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
| | - Michael Lydic
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
| | | | - Warren B. Nothnick
- Department of Cell Biology and Physiology
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
- Department of Cancer Biology
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Abedin Y, Minchella P, Peterson R, Gonnella F, Graham A, Cook I, Javellana M, Jewell A, Spoozak L, Nothnick WB. Functional Analysis of RE1 Silencing Transcription Factor as a Putative Tumor Suppressor in Human Endometrial Cancer. Int J Mol Sci 2024; 25:9693. [PMID: 39273639 PMCID: PMC11395688 DOI: 10.3390/ijms25179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Uterine cancer is the most common gynecologic malignancy in the United States, with endometrioid endometrial adenocarcinoma (EC) being the most common histologic sub-type. Considering the molecular classifications of EC, efforts have been made to identify additional biomarkers that can assist in diagnosis, prognosis, and individualized therapy. We sought to explore the relationship of Repressor Element 1 (RE1) silencing transcription factor (REST), which downregulates neuronal genes in non-neuronal tissue, along with matrix metalloproteinase-24 (MMP24) and EC. We analyzed the expression of REST and MMP24 in 31 cases of endometrial cancer and 16 controls. We then explored the baseline expression of REST and MMP24 in two EC cell lines (Ishikawa and HEC-1-A) compared to a benign cell line (t-HESC) and subsequently evaluated proliferation, migration, and invasion in the setting of loss of REST gene expression. REST and MMP24 expression were significantly lower in human EC samples compared to control samples. REST was highly expressed in EC cell lines, but decreasing REST gene expression increased proliferation (FC: 1.13X, p < 0.0001), migration (1.72X, p < 0.0001), and invasion (FC: 7.77X, p < 0.05) in Ishikawa cells, which are hallmarks of cancer progression and metastasis. These findings elicit a potential role for REST as a putative tumor suppressor in EC.
Collapse
Affiliation(s)
- Yasmin Abedin
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Paige Minchella
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Riley Peterson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Francesca Gonnella
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Amanda Graham
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Ian Cook
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Melissa Javellana
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Andrea Jewell
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Lori Spoozak
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Warren B. Nothnick
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Wen X, Huang S, Liu X, Li K, Guan Y. [Role of Notch 1 signaling and glycolysis in the pathogenic mechanism of adenomyosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1599-1604. [PMID: 39276056 PMCID: PMC11378043 DOI: 10.12122/j.issn.1673-4254.2024.08.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the expressions of glycolysis-related factors and changes in Notch1 signaling in endometrial tissues of adenomyosis (AM) and Ishikawa cells to explore the pathogenesis of AM. METHODS Eutopic endometrial tissues were collected from 8 patients with AM and 8 patients with uterine fibroids matched for clinical characteristics (control group). The expressions of Notch1 signaling proteins and glycolysis-related factors in the collected tissues were detected using qRT-PCR and Western blotting, and the levels of glucose and lactic acid were determined. An Ishikawa cell model with lentivirus-mediated stable Notch1 overexpression was established for assessing cell survival rate with CCK-8 assay, cell migration and invasion abilities with Transwell migration and invasion assays, and glycolytic capacity by determining the extracellular acidification rate. RESULTS Compared with those in the control group, the endometrial tissues in AM group showed significantly increased expression level of carbohydrate antigen 125 (CA125), increased mRNA expression levels of Notch1, HK2 and PDHA and protein expressions of Notch1, GLUT1, HK2, PKM and PDHA, lowered glucose level and increased lactate level. The Ishikawa cell models with stable Notch1 overexpression exhibited significantly increased cell survival rate with attenuated cell migration and invasion abilities and decreased glycolysis capacity and reserve. CONCLUSION The Notch1 signaling pathway participates in the pathogenesis of AM possibly by regulating the proliferation, migration, invasion and glycolysis of endometrial cells.
Collapse
Affiliation(s)
- X Wen
- Third Clincal School of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
| | - S Huang
- Third Clincal School of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
| | - X Liu
- Third Clincal School of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510400, China
| | - K Li
- Gynecology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510100, China
| | - Y Guan
- Gynecology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510100, China
| |
Collapse
|
4
|
Nothnick WB, Cui W, Falcone T, Graham A. Prefoldin-5 Expression Is Elevated in Eutopic and Ectopic Endometriotic Epithelium and Modulates Endometriotic Epithelial Cell Proliferation and Migration In Vitro. Int J Mol Sci 2024; 25:2390. [PMID: 38397067 PMCID: PMC10888559 DOI: 10.3390/ijms25042390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a common disease among women of reproductive age in which endometrial tissue grows in ectopic localizations, primarily within the pelvic cavity. These ectopic "lesions" grow as well as migrate and invade underlying tissues. Despite the prevalence of the disease, an understanding of factors that contribute to these cellular attributes remains poorly understood. Prefoldin-5 (PFDN5) has been associated with both aberrant cell proliferation and migration, but a potential role in endometriosis is unknown. As such, the purpose of this study was to examine PFDN5 expression in endometriotic tissue. PFDN5 mRNA and protein were examined in ectopic (lesion) and eutopic endometrial tissue from women with endometriosis and in eutopic endometrium from those without endometriosis using qRT-PCR and immunohistochemistry, respectively, while function of PFDN5 in vitro was evaluated using cell count and migration assays. PFDN5 mRNA and protein were expressed in eutopic and ectopic endometrial tissue, predominantly in the glandular epithelium, but not in endometrium from control subjects. Expression of both mRNA and protein was variable among endometriotic eutopic and ectopic endometrial tissue but showed an overall net increase. Knockdown of PFDN5 by siRNA transfection of endometriotic epithelial 12Z cells was associated with reduced cell proliferation/survival and migration. PFDN5 is expressed in eutopic and ectopic glandular epithelium and may play a role in proliferation and migration of these cells contributing to disease pathophysiology.
Collapse
Affiliation(s)
- Warren B. Nothnick
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute for Reproductive and Developmental Sciences, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Wei Cui
- Institute for Reproductive and Developmental Sciences, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tommaso Falcone
- Section of Reproductive Endocrinology and Infertility—Obstetrics and Gynecology Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA;
| | - Amanda Graham
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|