1
|
Moreno N, Sabater-Arcis M, Sevilla T, Alonso MP, Ohana J, Bargiela A, Artero R. Therapeutic potential of oleic acid supplementation in myotonic dystrophy muscle cell models. Biol Res 2024; 57:29. [PMID: 38760841 PMCID: PMC11100173 DOI: 10.1186/s40659-024-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.
Collapse
Affiliation(s)
- Nerea Moreno
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Maria Sabater-Arcis
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Teresa Sevilla
- CIBERER, IISCIII, Madrid, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Manuel Perez Alonso
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Jessica Ohana
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, F-75013, France
| | - Ariadna Bargiela
- CIBERER, IISCIII, Madrid, Spain.
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain.
| | - Ruben Artero
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| |
Collapse
|
2
|
Qin WJ, Shi JJ, Chen RY, Li CY, Liu YJ, Lu JF, Yang GJ, Cao JF, Chen J. Curriculum vitae of CUG binding protein 1 (CELF1) in homeostasis and diseases: a systematic review. Cell Mol Biol Lett 2024; 29:32. [PMID: 38443798 PMCID: PMC10916161 DOI: 10.1186/s11658-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.
Collapse
Affiliation(s)
- Wan-Jia Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|