1
|
Luo Y, Liu J, Qu P, Han S, Li X, Wang Y, Su X, Zeng J, Li J, Deng S, Liang Q, Hou L, Cheng P. The crosstalk of breast cancer and ischemic heart disease. Cell Death Discov 2025; 11:185. [PMID: 40251177 PMCID: PMC12008236 DOI: 10.1038/s41420-025-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
In recent years, the continuous optimization of anti-tumor therapy has greatly improved the cancer-specific survival rate for patients with breast cancer (BC). The prevention and treatment of breast cancer-related heart diseases have become a new breakthrough in improving the long-term survival for BC patient. The cardiac damages caused by BC treatment are increasingly prominent among BC patients, of which ischemic heart disease (IHD) is the most prominent. Besides, the systemic inflammatory response activated by tumor microenvironment c an induce and exacerbate IHD and increase the risk of myocardial infarction (MI). Conversely, IHD can also exert detrimental effects on tumors. MI not only increases the risk of BC, but also induces specialized immune cell to BC and accelerates the progression of BC. Meanwhile, the treatment of IHD can also promote BC metastasis and transition to more aggressive phenotypes. Although BC and IHD are diseases of two independent systems, their crosstalk increases the difficulty of anti-cancer treatment and IHD management, which reduces the survival for both diseases. Therefore, this review mainly explores the mutual influence and underlying mechanisms between BC and IHD, aiming to provide insights for improving the long-term survival for patients with BC or IHD.
Collapse
Affiliation(s)
- Yunbo Luo
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jun Liu
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Peng Qu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Shiqi Han
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Yali Wang
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Xiaohan Su
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jiao Zeng
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jinsui Li
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Shishan Deng
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Qi Liang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, 610072, P.R. China.
| |
Collapse
|
2
|
Li Z, Miao H, Bao W, Zhang L. Development and validation of a nomogram model of lung metastasis in breast cancer based on machine learning algorithm and cytokines. BMC Cancer 2025; 25:692. [PMID: 40229760 PMCID: PMC11998148 DOI: 10.1186/s12885-025-14101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The relationship between cytokines and lung metastasis (LM) in breast cancer (BC) remains unclear and current clinical methods for identifying breast cancer lung metastasis (BCLM) lack precision, thus underscoring the need for an accurate risk prediction model. This study aimed to apply machine learning algorithms for identifying the key risk factors for BCLM before developing a reliable prediction model centered on cytokines. METHODS This population-based retrospective study included 326 BC patients admitted to the Second Affiliated Hospital of Xuzhou Medical University between September 2018 and September 2023. After randomly assigning the patients to a training cohort (70%; n = 228) or a validation cohort (30%; n = 98) the risk factors for BCLM were identified using Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) models. Significant risk factors were visualized with a Venn diagram and incorporated into a nomogram model, the performance of which was then evaluated according to three criteria, namely discrimination, calibration and clinical utility using calibration plots, receiver operating characteristic (ROC) curves and decision curve analysis (DCA). RESULTS Among the cohort, 70 patients developed LM. A nomogram was then developed to predict the 5-year and 10-year BCLM risk by incorporating five key variables, namely endocrine therapy, hsCRP, IL6, IFN-ɑ and TNF-ɑ. For the 5-year prediction model, the training and validation cohorts had AUC values of 0.786 (95% CI: 0.691-0.881) and 0.627 (95% CI: 0.441-0.813), respectively, while for the 10-year prediction model, the corresponding AUC values were 0.687 (95% CI: 0.528-0.847) and 0.797 (95% CI: 0.605-0.988), respectively. ROC analysis further confirmed the model's strong discriminative ability, while calibration plots indicated that the predicted and observed outcomes were in good agreement in both cohorts. Finally, DCA demonstrated the model's effectiveness in clinical practice. CONCLUSION Using machine learning algorithms, this study developed aa nomogram that could effectively identify BC patients who were at a higher risk of developing LM, thus providing a valuable tool for decision-making in clinical settings.
Collapse
Affiliation(s)
- Zhaoyi Li
- Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Meijian Road 32, Xuzhou, 221000, China
| | - Hao Miao
- Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221000, China
| | - Wei Bao
- Tongji University, Yangpu District, Siping Road 1239, Shanghai, 310000, China
| | - Lansheng Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Meijian Road 32, Xuzhou, 221000, China.
| |
Collapse
|
3
|
Kumar RI, Jain K, Rai KR, Arora P, Gururajan H, Sarkar K. Function of antigen-presenting cells in non-small-cell lung cancer (NSCLC). Med Oncol 2025; 42:162. [PMID: 40221637 DOI: 10.1007/s12032-025-02703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
The most common type of lung cancer called NSCLC avoids immune monitoring by blocking antigen display and T cell response activation. Anti-tumor immunity requires the essential function of antigen-presenting cells (APCs) which include dendritic cells and macrophages and B cells. NSCLC causes APCs to stop their normal function because they fail to properly display tumor antigens and activate adaptive immune responses. APC dysfunction in NSCLC is mainly caused by the tumor microenvironment (TME) which actively reprograms these cells through inhibitory cytokines and metabolic constraints and immune checkpoints. As a result, NSCLC exhibits poor responses to immunotherapies, such as checkpoint inhibitors. The analysis of APC-TME interactions enables researchers to develop strategies that will enhance APC function along with antigen presentation while improving immunotherapy effectiveness. The research examines APC dysfunction in NSCLC together with its TME mechanisms and develops therapeutic strategies to combat immune suppression for better clinical results.
Collapse
Affiliation(s)
- R Ilaya Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kavya Jain
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Karan Raj Rai
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Prashasti Arora
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Harshnna Gururajan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
5
|
De Placido P, Di Rienzo R, Pietroluongo E, Martinelli C, Tafuro M, Formisano P, D'Esposito V, Poggio FB, Ruelle T, Cardinali B, Di Lauro V, Buono G, Caputo R, Buonaiuto R, Caltavituro A, Rocco P, Porciello G, De Laurentiis M, Del Mastro L, Vernieri C, Veneziani BM, Bianco R, Crispo A, De Angelis C, Arpino G, Giuliano M. Insights on the association of anthropometric and metabolic variables with tumor features and genomic risk in luminal early breast cancer: Results of a multicentric prospective study. Eur J Cancer 2025; 221:115409. [PMID: 40220739 DOI: 10.1016/j.ejca.2025.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Hormone receptor-positive (HR+)/HER2-negative (HER2-) early-stage breast cancers (EBC) are treated with adjuvant endocrine therapy (ET), with chemotherapy (CT) reserved for high-risk cases. Obesity is linked to increased recurrence risk. The Oncotype DX® assay predicts prognosis and CT benefit. The PRO BONO study evaluated Oncotype DX test's impact on treatment decisions and explored associations between genomic risk, tumor features, and patient metabolic profiles. MATERIALS AND METHODS Patients with HR+ /HER2-EBC undergoing Oncotype DX testing were enrolled. Body mass index (BMI), tumor characteristics (ER, PR, Ki67, grading, size, nodal status), a large panel of metabolic analytes, and Oncotype DX Recurrence Score® (RS) results were collected. Treatment recommendations (ET vs CT-ET) were recorded pre- and post-Oncotype DX, and concordance was determined using Cohen's Kappa. Associations were tested using Chi-Square test and Spearman Correlation. RESULTS Of the 248 EBC patients (2019-2021), Oncotype DX testing reduced CT use by 47.7 %. Higher RS positively correlated with serum triglycerides and inversely with GIP (all p < 0.05). No significant association was found between patient BMI and RS result. Conversely, tumor size positively correlated with BMI (p = 0.0286) and with serum levels of leptin (p = 0.0079), PAI-1 (p = 0.0083), C-peptide (p = 0.0124), GIP (p = 0.0036), GLP-1 (p = 0.0476), glucagon (p = 0.0224), and insulin (p = 0.0327). A BMI≥ 30 and higher GLP-1 levels (>148.85pg/ml) were independently associated with increased odds of having larger tumor size (>2 cm). CONCLUSIONS Recurrence Score result significantly impacts treatment decisions in HR+ /HER2-EBC. RS result was not associated with BMI, although unfavorable metabolic profiles and obesity-related markers correlated with larger tumors. These findings highlight the need to further investigate the link between metabolic profiles and breast cancer biology.
Collapse
Affiliation(s)
- Pietro De Placido
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Rossana Di Rienzo
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Claudia Martinelli
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Margherita Tafuro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University Federico II, Naples, Italy
| | - Vittoria D'Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" - National Research Council (IEOMI-CNR), Naples, Italy
| | | | - Tommaso Ruelle
- IRCSS Ospedale Policlinico San Martino, UO Clinica Oncologia Medica, Genoa, Italy
| | - Barbara Cardinali
- IRCSS Ospedale Policlinico San Martino, UO Clinica Oncologia Medica, Genoa, Italy
| | - Vincenzo Di Lauro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Buono
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Roberta Caputo
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Roberto Buonaiuto
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Aldo Caltavituro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Paola Rocco
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Lucia Del Mastro
- IRCSS Ospedale Policlinico San Martino, UO Clinica Oncologia Medica, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), Università di Genova, Genoa, Italy
| | - Claudio Vernieri
- Department of Oncology and Hematology-oncology, University of Milan, Milan, Italy; Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Carmine De Angelis
- Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy.
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| |
Collapse
|
6
|
Pai SK, Chakraborty K, Pai AA, Dhara S, James MT. Seaweeds: Nature's super therapeutics? Immunomodulatory and anti-viral properties of sulfated rhamno xyloglucuronan isolated from Ulva fasciata Delile. Int J Biol Macromol 2025; 300:139978. [PMID: 39826735 DOI: 10.1016/j.ijbiomac.2025.139978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Green seaweeds, which constitute a significant portion of the global seaweed population, exhibit a wide range of therapeutic properties. The study aimed to isolate a (1 → 4) linked sulfated rhamno xyloglucuronan, designated as UFP-2, from the edible green seaweed Ulva fasciata Delile, and to evaluate its efficacy in modulating immune responses and inhibiting infection by the SARS-CoV-2 Delta variant. Anti-inflammatory potential of UFP-2 was demonstrated through the regulation of key cytokines involved in inflammatory responses triggered by viral infections, including interferons (IFN-α/γ), interleukin (IL-1β/12/33), and tumor necrosis factor (TNF-α). Confocal microscopy and flow cytometry analyses indicated downregulation of IFN-α and IL-1β, while TNF-α expression reduced from 29.28 % in lipopolysaccharide (LPS)-induced CALU-1 cells to 1.6-5.4 %, upon UFP-2 treatment. Treatment with UFP-2 at 125 μg/mL significantly downregulated the overexpression of IL-1β level in SARS-CoV-2-infected CALU-1 cells. Administering UFP-2 to SARS-CoV-2 (delta variant) induced cells led to a higher cycle threshold (Ct) values (20.34), indicating reduced viral load, with viral copy numbers decreasing from over 6.5 × 107 to <2.5 × 107 per cell. Structure-activity relationship analysis indicates that the sulfate groups and overall hydrophilicity of UFP-2 may enhance its binding affinity to target receptors, potentially disrupting viral entry and replication processes.
Collapse
Affiliation(s)
- Shilpa Kamalakar Pai
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Applied Chemistry, Cochin University of Science and Technology, South Kalamassery, Cochin, Kerala State, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| | - Ashwin Ashok Pai
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Shubhajit Dhara
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Mereeta Thundathil James
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India
| |
Collapse
|
7
|
Li P, Guan D, Li S, Deng J, Zhang H, Liu X, Chen X, Xu Z, Wang H, Ren F. Exosomes derived from myelodysplastic syndromes cells induce IL-1β production from macrophages to promote disease progress. Cytokine 2025; 190:156924. [PMID: 40147377 DOI: 10.1016/j.cyto.2025.156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Exosomes are extracellular vesicles with a membrane structure that play important roles in intercellular communication, material transport and cellular immunity.Our previous study found that exosomes can affect the biological functions of MDS cell lines, but the mechanism of action has not been elucidated.Macrophages are one of the major innate immune cells that produce a variety of inflammatory cytokines and perform multiple biological functions in the tumor microenvironment (TME).The role of tumor cell-derived exosomes on macrophages and in the progression of MDS is rarely reported,therefore, the aim of our study was to investigate the effect of exosomes on macrophages and the effect of cytokines secreted by macrophages on MDS cells, with a view to exploring the role and mechanisms of exosomes and macrophages in the progression of MDS. METHODS Changes in cytokine content in peripheral blood of MDS patients were detected. The cytokine concentration in the growth environment of MDS cell lines was changed to observe the changes in the biological functions of MDS cell lines.After induction of human monocyte cell line (THP-1) into THP-1-Mφ macrophages with Phorbol 12-myristate 13-acetate (PMA), the macrophages (Mφ) were then co-cultured with MDS cell line exosomes extracted by ultrafiltration with THP-1-Mφ to observe macrophage (Mφ) differentiation.Flow cytometry was used to detect the changes in cytokine content released by macrophages before and after the addition of exosome inhibitors, and the changes in the biological function of MDS cell lines during this process.Gene and protein levels of significantly changed cytokine-related signaling pathways were detected using Q-PCR and WB. RESULTS IL-1β levels were significantly higher in the peripheral blood of MDS patients compared to controls.The exosomes extracted by ultrafiltration can be taken up by macrophages, which can promote the release of IL-1β from THP-1-Mφ cells, and promote the proliferation, apoptosis and migration ability of MDS cell lines.Exosomes stimulate macrophages to produce IL-1β and promote MDS disease progression through the MER/ERK pathway.
Collapse
Affiliation(s)
- Peichun Li
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Dongmei Guan
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Shuo Li
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Ju Deng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - HongYu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Xiaoli Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Xiuhua Chen
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China
| | - Zhifang Xu
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China
| | - Hongwei Wang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China; Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China; Shanxi University of Chinese Medicine,No. 121, University Street, Yuci District, Jinzhong, City, Shanxi Province, China.
| | - Fanggang Ren
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China.
| |
Collapse
|
8
|
Yuan S, Zhu L, Chen X, Lin Q. Huanglian Jiedu Tang regulates the inflammatory microenvironment to alleviate the progression of breast cancer by inhibiting the RhoA/ROCK pathway. Tissue Cell 2025; 95:102850. [PMID: 40086110 DOI: 10.1016/j.tice.2025.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Breast cancer (BC) is a prevalent malignancy among women with strong heterogeneity. This study is designed to investigate the therapeutic effects of Huanglian Jiedu Tang (HLJDT) on BC progression and reveal its potential mechanism. METHODS The effects of different concentrates of HLJDT on the viability, proliferation, migration, and invasion of BC cells were measured by CCK-8 assay, EdU staining, scratch test, and transwell assay, respectively. The levels of inflammatory factors and oxidative stress indicators were detected by ELISA. RhoA/ROCK pathway related protein was measured by western blot. A xenograft tumor model was constructed to explore the effects of HLJDT in vivo. Hematoxylin eosin staining was exploited to observe the pathological changes. Tumor proliferation was detected by immunohistochemistry (Ki67). Macrophage markers were detected by flow cytometry and RT-PCR. Furthermore, the ROCK agonist was used for feedback functional experiments. RESULTS There was a concentration-dependent increase in the inhibitory impact of HLJDT on the viability, proliferation, migration, and invasion of BC cells (MCF-7 and MDA-MB-23). Moreover, HLJDT inhibit inflammation (TNF-α, IL-6 and IL-1β), oxidative stress (ROS, MDA and GSH) and RhoA/ROCK pathway. HLJDT regulated inflammatory microenvironment in BC, with increased IL-10, IL-4 levels and reduced TGF-β. In vivo, HLJDT restrained the tumor growth and proliferation, diminishing inflammatory infiltration and reducing malignancy. Additionally, HLJDT significantly increased F4/80 +CD86 and iNOS levels, as well as the decreased F4/80 +CD163 + and Arg1 levels. The treatment of ROCK agonist weakened the inhibitory effects of HLJDT on inflammation and BC progression. CONCLUSION HLJDT may regulate inflammatory microenvironment to suppress BC progression through inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Shaofei Yuan
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian City, Zhejiang Province, PR China; Life and Health Research Academy of Wenzhou Medical University, Ruian City, Zhejiang Province, PR China
| | - Linjia Zhu
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian City, Zhejiang Province, PR China.
| | - Xiaoqiang Chen
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian City, Zhejiang Province, PR China
| | - Qiuyan Lin
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian City, Zhejiang Province, PR China
| |
Collapse
|
9
|
Marzano C, Pitruzzella R, Arcadio F, Passeggio F, Seggio M, Zeni L, Pasquardini L, Cennamo N. Detecting Attomolar Concentrations of Interleukin IL-17A via Pollen-Based Nanoplasmonic Biochips. BIOSENSORS 2025; 15:161. [PMID: 40136958 PMCID: PMC11940818 DOI: 10.3390/bios15030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
Interleukins are involved in several diseases and cancers, and their detection and monitoring are of great interest. Their low abundance and short half-lives suggest the need to develop rapid, specific, and highly sensitive detection platforms, easily integrable in point-of-care (POC) systems. Among the other interleukins, interleukin IL-17A is associated with inflammations, neurodegenerative diseases, and cancers, and no biosensors have been previously reported for its detection. In this work, for the detection of IL-17A, a highly sensitive nanoplasmonic sensor based on natural nanostructures like pollen shells, covered by a gold film and a bio-receptor layer, is presented. Hybrid plasmonic modes are exploited to reach high sensitivity without using costly techniques to fabricate periodic nanostructures, such as electron beam lithography. A transparent amino-modified glass substrate is functionalized with carboxylic activated pollen via carbodiimide chemistry. Then, the pollen-based nanostructures are covered by a gold film and derivatized by an immuno-layer specific to IL-17A recognition. The developed IL-17A biosensor is monitored via a simple, small-sized, and low-cost experimental setup, demonstrating high selectivity, a fast response time of about five minutes, and sensitivity with a limit of detection in the ag/mL concentration range. The biosensor allows for the detection of IL-17A in complex solutions thanks to the possibility of high dilution, an advantageous aspect to POC systems.
Collapse
Affiliation(s)
- Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Rosalba Pitruzzella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Federica Passeggio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Mimimorena Seggio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Laura Pasquardini
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
- Indivenire Srl, Via Sommarive 18, 38123 Trento, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| |
Collapse
|
10
|
Araújo HM, Moura GAD, Rocha YM, Pinheiro Gomes CV, Melo de Oliveira VNE, Oliveira RND, Figueiredo Nicolete LDD, Magalhães EP, de Menezes RR, Nicolete R. In vitro antitumor and immunomodulatory activities of 1,2,4-oxadiazole derivatives. Biochem Biophys Rep 2025; 41:101950. [PMID: 40028040 PMCID: PMC11868951 DOI: 10.1016/j.bbrep.2025.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, responsible for approximately 60,000 deaths annually. The main strategy for treating melanoma is surgery to completely remove the lesion and its margins. However, for more advanced cases with a high recurrence rate, the preferred approach is to combine chemotherapy with immunotherapy treatments. Tumor-associated macrophages (TAMs) are the most abundant leukocytes in solid tumors. Current immunotherapy approaches target TAMs by inhibiting pro-tumoral TAMs and activating anti-tumoral TAMs, repolarizing them to the M1 phenotype. The antitumor and immunomodulatory activities of molecules derived from 1,2,4-oxadiazole, as demonstrated in the literature, highlight the potential of this class as a source of promising candidates for therapeutic applications. Thus, the present study aims to evaluate the antitumor and immunomodulatory effects of the synthetic derivative 1,2,4-oxadiazole, N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazole-5-amine (1,2,4-oxadiazole derivative 2), in melanoma cells and murine Bone Marrow-Derived Macrophages (BMDMs). Cytotoxicity in B16-F10 and BMDMs cells was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT method. 1,2,4-oxadiazole derivative 2 exhibited antiproliferative effects on both cell lines, being 2.6 times more selective for B16-F10. Necrosis was identified as the active induced death pathway. BMDMs isolated and exposed to 1,2,4-oxadiazole derivative 2 polarize to the M1 phenotype and induce TNF-α at a concentration of 64.34 μM. Exposure to melanoma murine supernatants also promotes M1 polarization. Supernatants containing traces of 1,2,4-oxadiazole derivative 2 (Supernatants B, C, and D) increased the percentage of M1 cells compared to Supernatant A, as well as elevated levels of nitrite, TNF-α, and IL-12. 1,2,4-oxadiazole derivative 2 combined with Supernatant A and 1,2,4-oxadiazole derivative 2 combined with LPS also resulted in higher M1 polarization, suggesting a synergistic effect on M1 polarization and TNF-α production. Our findings underscore the significance of the 1,2,4-oxadiazole compound class and highlight the potential of 1,2,4-oxadiazole derivative 2 as an antitumoral and immunotherapeutic agent.
Collapse
Affiliation(s)
- Héverton Mendes Araújo
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Cristian Vicson Pinheiro Gomes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | | | | | | | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Ramon R.P.P.B. de Menezes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| |
Collapse
|
11
|
Tang G, Wang Z, Geng W, Yu Y, Zhang Y. Exploration of crucial stromal risk genes associated with prognostic significance and chemotherapeutic opportunities in invasive ductal breast carcinoma. J Genet Eng Biotechnol 2025; 23:100448. [PMID: 40074422 PMCID: PMC11732444 DOI: 10.1016/j.jgeb.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Few studies revealed that stromal genes regulate the tumor microenvironment (TME). However, identification of key-risk genes in the invasive ductal breast carcinoma-associated stroma (IDBCS) and their associations with the prediction of risk group remains lacking. METHODS This study used the GSE9014, GSE10797, GSE8977, GSE33692, and TGGA BRCA datasets. We explored the differentially expressed transcriptional markers, hub genes, gene modules, and enriched KEGG pathways. We employed a variety of algorithms, such as the log-rank test, the LASSO-cox model, the univariate regression model, and the multivariate regression model, to predict prognostic-risk genes and the prognostic-risk model. Finally, we employed a molecular docking-based study to explore the interaction of sensitive drugs with prognostic-risk genes. RESULTS In comparing IDBCS and normal stroma, we discovered 1472 upregulated genes and 1400 downregulated genes (combined ES > 0585 and adjusted p-value < 0.05). The hub genes enrich cancer, immunity, and cellular signaling pathways. We explored the 12 key risk genes (ADAM8, CD86, CSRP1, DCTN2, EPHA1, GALNT10, IGFBP6, MIA, MMP11, RBM22, SLC39A4, and SYT2) in the IDBCS to identify the high-risk group and low-risk group patients. The high-risk group had a lower survival rate, and the constructed ROC curves evaluated the validity of the risk model. Expression validation and diagnostic efficacy revealed that the key stromal risk genes are consistently deregulated in the high-risk group and high stromal samples of the TCGA BRCA cohort. The expression of crucial risk genes, including CD86, CSRP1, EPHA1, GALNT10, IGFBP6, MIA, and RBM22 are associated with drug resistance and drug sensitivity. Finally, a molecular docking study explored several sensitive drugs (such as QL-XII-61, THZ-2-49, AZ628, NG-25, lapatinib, dasatinib, SB590885, and dabrafenib) interacted with these essential risk genes through hydrogen bonds and other chemical interactions. CONCLUSIONS Exploring essential prognostic-risk genes and their association with the prognosis, diagnostic efficacy, and risk-group prediction may provide substantial clues for targeting the breast cancer stromal key-risk genes.
Collapse
Affiliation(s)
- Guohua Tang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zhi Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Wei Geng
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Yu
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Department of Hepatobiliary and Echinococcosis Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
12
|
Tang S, Zhang Y, Song L, Hui K, Jiang X. High CXCL8 expression predicting poor prognosis in triple-negative breast cancer. Anticancer Drugs 2025; 36:246-252. [PMID: 39761194 PMCID: PMC11781556 DOI: 10.1097/cad.0000000000001678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Triple-negative breast cancer (TNBC) is highly prone to early relapse and metastasis following standard treatment. CXCL8 is a key factor in tumor invasion and metastasis, but its role in TNBC prognosis and clinicopathological correlations remains poorly understood. This study investigated CXCL8 expression and its clinical significance in TNBC to develop a prognostic nomogram for guiding intensive treatment and follow-up strategies. Public datasets from the gene expression omnibus public datasets platform were analyzed to assess CXCL8 expression. Additionally, paraffin-embedded TNBC specimens collected from our hospital were examined using immunohistochemistry to explore the relationship between CXCL8 expression and clinicopathological features. Survival analysis was performed to evaluate whether CXCL8 serves as an unfavorable prognostic biomarker for TNBC patients. Univariate Cox regression analysis was conducted to identify prognostic factors. Based on these findings, a nomogram was developed to predict TNBC progression risk. CXCL8 expression was significantly higher in TNBC tissues than in adjacent normal tissues ( P < 0.05). Among 122 TNBC patients, 46 were CXCL8-positive and 76 were CXCL8-negative. CXCL8 expression was significantly associated with N stage ( P < 0.05). Progression-free survival (PFS) was markedly shorter in the CXCL8-positive group compared with the CXCL8-negative group ( P < 0.001). Univariate Cox regression identified N1-3, M1, and CXCL8 positivity as significant risk factors for disease progression. A nomogram incorporating these variables (N, M, and CXCL8) was constructed to predict PFS. Time-dependent receiver operating characteristic curve analysis at 12-, 36-, and 48-month demonstrated strong predictive performance, with area under the curve values of 0.857, 0.839, and 0.795, respectively. CXCL8 is highly expressed in TNBC and promotes lymphatic metastasis, serving as an unfavorable prognostic factor. The developed nomogram offers a valuable tool for guiding personalized treatment and follow-up strategies in TNBC patients.
Collapse
Affiliation(s)
- Sumin Tang
- Department of Thyroid and Breast Tumor Surgery
| | - Yuqing Zhang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Liying Song
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
13
|
Kwantwi LB, Boafo JD, Egleh BE, Li M. CCL20 in the tumor microenvironment: implications for cancer progression and therapeutic approaches. Clin Transl Oncol 2025:10.1007/s12094-025-03874-5. [PMID: 39985603 DOI: 10.1007/s12094-025-03874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Increasing knowledge of the immunosuppressive tumor microenvironment in cancer-related processes has led to the developing of novel immune-based therapies that have changed the cancer treatment paradigm. In the tumor microenvironment, the plethora of soluble factors secreted by tumor cells interacts with immune cells and non-immune components to deliver signals necessary for tumor progression. Accordingly, targeting tumor-derived factors inducing this immunosuppressive tumor microenvironment has become an appealing therapeutic potential in advancing cancer treatment. CCL20, a chemokine best known to induce leucocyte migration in response to pathological and inflammatory conditions, has been implicated in tumor proliferation, angiogenesis, metastasis, immunosuppression, and therapeutic resistance. Notably, CCL20 and its receptor CCR6 are important in tumor microenvironment interactions. This review discusses the interaction between the CCL20-CCR6 axis and the tumor microenvironment and how these interactions promote tumor progression. Also, an outline of studies utilizing CCL20 in combination with other standard cancer treatments has been shed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Biomedical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| | - James Danquah Boafo
- Department of Nursing and Midwifery, Faculty of Health and Allied Sciences, Pentecost University, Sowutoum, Ghana
| | - Bevelyn Emefa Egleh
- Department of Biomedical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH, 44242, USA
| | - Mingfeng Li
- Department of Pathology, Affiliated Subei People'S Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| |
Collapse
|
14
|
Zhang J, Wang Y, Liu Y, Chen H, Chai N, Zhao Y, Li Y, Li X, He J, Zhang H. Proteomic profiling reveals biological processes and biomarkers involved in the pathogenesis of occult breast cancer. BMC Cancer 2025; 25:231. [PMID: 39930421 PMCID: PMC11812265 DOI: 10.1186/s12885-025-13657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Occult breast cancer (OBC) is defined as axillary lymph node metastasis without any evidence of a primary tumor in the breast. Because of the limited number of clinical cases, the clinicopathological features and treatment recommendations of OBC are still controversial. In addition, its natural history is poorly understood and its proteomic signature remains unknown. MATERIALS AND METHODS We compared the clinicopathological features and prognosis of OBC patients and Non-OBC patients from the Surveillance, Epidemiology, and End Results (SEER) database and analyzed the effects of local treatment on the survival outcomes of OBC patients. Additionally, we performed a quantitative proteomic analysis for tissue samples of metastatic lymph nodes from OBC patients (OBC-LN), and paired tissue samples of metastatic lymph nodes (Non-OBC-LN) and primary tumors (Non-OBC-PT) from Non-OBC patients. We identified differentially expressed proteins in different comparable groups using Student's t test. Functional enrichment and protein-protein interaction network analyses were used to interpret the functions and interactions of the differentially expressed proteins in the comparison of OBC-LN vs Non-OBC-LN. Immunohistochemistry was used for the validation of the hub proteins. RESULTS Analysis of data from the SEER database demonstrated that OBC patients had a better prognosis than Non-OBC patients did and that either mastectomy or radiation therapy improved the outcomes of OBC patients. A total of 7208 comparable proteins were successfully quantified. Compared with those of the Non-OBC-LN samples, the OBC-LN protein profiles exhibited an active extracellular matrix and a thoroughly upregulated epithelial-mesenchymal transition phenotype. COL1A1, COL1A2, COL3A1, MMP2 and LUM were overexpressed in the OBC-LN samples and were identified as hub proteins. Immunohistochemical staining demonstrated that the five hub proteins were overexpressed in OBC-LN samples. CONCLUSION Our results provide insights for the clinical management of OBC and the proteomic signature of OBC offers molecular basis for further biological research.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Yidi Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Yu Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Chai
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Yuting Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijun Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Xiaoqian Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.
| | - Huimin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
15
|
Jiang Y, Qiu J, Ye N, Xu Y. Current status of cytokine-induced killer cells and combination regimens in breast cancer. Front Immunol 2025; 16:1476644. [PMID: 39981243 PMCID: PMC11839775 DOI: 10.3389/fimmu.2025.1476644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer remains a significant health challenge worldwide, with substantial efforts aimed at understanding its pathogenesis, biological characteristics, and clinical triggers. Recently, immunotherapy such as the cytokine-induced killer cells combined with other drug therapies has offered new hope for patients with advanced breast cancer. However, the specific pathogenesis of combination regimens involving cytokine-induced killer cells remains elusive. Besides, the combination of immunotherapy with cytokine-induced killer cells might represent a novel breakthrough. This review outlines the current status of cytokine-induced killer cell therapies and their combination strategies, especially the combination of chemotherapy with molecularly targeted treatments, for the management of breast cancer.
Collapse
Affiliation(s)
- Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
16
|
Yadav S, Prasannan A, Venkatachalam K, Binesh A. Exploring the mechanism and crosstalk between IL-6 and IL- 1β on M2 macrophages under metabolic stress conditions. Cytokine 2025; 186:156852. [PMID: 39765025 DOI: 10.1016/j.cyto.2024.156852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells. This is evident in obesity, diabetes, and chronic inflammation. Although many cytokines regulate macrophage polarization, interleukin-6 (IL-6) and interleukin-1β (IL-1β) are major players, but their effects on M2 macrophage behavior under metabolic stress remain unclear. This study describes the intricacies within M2 macrophages concerning IL-6 and IL-1β signaling when under metabolic stress. Though, more frequently than not, IL-6 is labelled as pro-inflammatory, it can also behave as an anti-inflammatory mediator. On the other hand, IL-1β is the main pro-inflammatory agent, particularly in metabolic disorders. The relationship between these cytokines and the macrophages is mediated through important pathways such as JAK/STAT and NFκB, which get perturbed by metabolic stress. Therefore, metabolic stress also alters the functional parameters of macrophages, including alterations in mitochondrial metabolism, glycolytic and oxidative metabolism. Phosphorylation alters the kinetics involved in energy consumption and affects their polarization and their function. However, it has been suggested that IL-6 and IL-1β may work in concert or competition when inducing M2 polarization and, importantly, implicate cytokine release, phagocytic activity, and tissue repair processes. In this review, we discuss the recent literature on the participation of IL-6 and IL-1β cytokines in macrophage polarization and how metabolic stress changes cytokine functions and synergistic relations. A better understanding of these cytokines would serve as an important step toward exploring alternative antiviral strategies directed against metabolic disturbance and, hence, approve further endeavors.
Collapse
Affiliation(s)
- Shawna Yadav
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
17
|
Zhang Y, Tang X, Wang Y, Shi F, Gao X, Guo Y, Liu Q, Ma W. Recent advances targeting chemokines for breast cancer. Int Immunopharmacol 2025; 146:113865. [PMID: 39718056 DOI: 10.1016/j.intimp.2024.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Breast cancer (BC) is a complex and heterogeneous disease, and its onset and progression involve the interplay of multiple molecular mechanisms. Chemokines and their receptors are key regulators of cell migration and immune responses and contribute significantly to the pathophysiology of BC. This article reviews the classification, functions, and mechanisms of chemokines and their receptors in the proliferation, migration, invasion, and angiogenesis of BC cells. This study explores the regulatory roles of chemokines and their receptors in the immune microenvironment of BC, particularly the ways they influence the infiltration, polarization, and antitumor immune responses of immune cells. Finally, this article summarizes the current treatment strategies for breast cancer that utilize chemokines and their receptors and provides insights into future research directions and trends in this field.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Xiufeng Tang
- Department of Pharmacy and Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China.
| | - Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Shandong, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
18
|
Li H, Liang X, Ma J, Liu Q, Lin Y, Tang J, Ren Z, Liang Z. IL-8 Downregulation Mediates the Beneficial Effects of Infection-Induced Fever on Breast Cancer Prognosis. J Inflamm Res 2025; 18:405-419. [PMID: 39802515 PMCID: PMC11725275 DOI: 10.2147/jir.s496099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Previous studies have reported that infection-induced fever is associated with improved breast cancer prognosis, potentially through the modulation of cytokines. However, the key cytokines and the underlying mechanisms through which fever exerts its anti-tumor effects remain unclear. Patients and Methods A total of 794 breast cancer patients were recruited between 2008 and 2017, with follow-up extending until October 31st, 2023. Infection-induced fever was assessed using questionnaires, while a multiplex assay evaluated a panel of 27 cytokines. The mediation effects of various cytokines were analyzed through model-based causal mediation analysis. Additionally, we explored modifications to these mediation effect by examining interactions among the cytokines themselves as well as their interactions with infection-induced fever. Bioinformatic analyses were conducted to elucidate the biological pathways mediating infection-induced fever. Results The relationship between infection-induced fever and improved breast cancer prognosis was mediated by a decrease in interleukin-8 (IL-8) levels. Furthermore, our findings revealed that the downregulation of IL-8, which mediates the beneficial effects of fever, was antagonized by IL-2, IL12p70 and IL-7. By intersecting the biological pathways influenced by IL-8, alongside those affected by IL-2, IL12p70, or IL-7, we found that these latter cytokines antagonized the mediation effects of IL-8 via regulating critical pathways such as neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Conclusion Infection-induced fever may improve breast cancer prognosis through IL-8 downregulation and the mediation mechanisms may be involved in neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Such findings not only provide valuable insights into effectively managing febrile responses for breast cancer patients, but also underscore the therapeutic potential of cytokines in breast cancer patients.
Collapse
Affiliation(s)
- Heliang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiafan Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Junpeng Tang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zefang Ren
- The School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhuozhi Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Zenith Institute of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
19
|
Wang M, Wan Q, Wang C, Jing Q, Nie Y, Zhang X, Chen X, Yang D, Pan R, Li L, Zhu L, Gui H, Chen S, Deng Y, Chen T, Nie Y. Combinational delivery of TLR4 and TLR7/8 agonist enhanced the therapeutic efficacy of immune checkpoint inhibitors to colon tumor. Mol Cell Biochem 2025; 480:445-458. [PMID: 38507020 DOI: 10.1007/s11010-024-04966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Mengjiao Wang
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Quan Wan
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China
| | - Chenglv Wang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qianyu Jing
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA
| | - Runsang Pan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Linzhao Li
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Lan Zhu
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Huan Gui
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Shuanghui Chen
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Yuezhen Deng
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yingjie Nie
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
20
|
Mariana SM, Brenda RP, Heriberto PG, Cristina L, David B, Guadalupe ÁL. GPER1 activation by estrogenic compounds in the inflammatory profile of breast cancer cells. J Steroid Biochem Mol Biol 2025; 245:106639. [PMID: 39571822 DOI: 10.1016/j.jsbmb.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Breast cancer (BC) is the most frequent female neoplasm worldwide. Its establishment and development have been related to inflammatory cytokine expression. Steroid hormones such as estradiol (E2) can regulate proinflammatory cytokine secretion through interaction with its nuclear receptors. However, little is known regarding the activation of its membrane estrogen receptor (GPER1) and the inflammatory cytokine environment in BC. We have studied the synthesis and biological effects of molecules analogs to E2 for hormone replacement therapy (HRT), such as pentolame. Nevertheless, its interaction with GPER1 and the modulation of inflammatory cytokines in different BC types has been barely studied and deserves deeper investigation. In this research, the role of GPER1 in the proliferation and modulation of inflammatory cytokines involved in carcinogenesis and metastatic processes in different BC cell lines was assessed by binding to various compounds. To achieve this goal, the presence of GPER1 was identified in different BC cell lines. Subsequently, cell proliferation after exposure to E2, pentolame and GPER1 agonist, G1, was subsequently determined alone or in combination with the GPER1 antagonist, G15. Finally, the pro-inflammatory cytokine secretion derived from the supernatants of BC cells exposed to the previous treatments was also assessed. Interestingly, GPER1 activation or inhibition has significant effects on the cytokine regulation associated with invasion in BC. Notably, pentolame did not induce cell proliferation or increase the proinflammatory cytokine expression compared to E2 in BC cell lines. In addition, pentolame did not induce the presence of the cell adhesion molecule PECAM-1. In contrast, E2 treatment weakly induced the expression of PECAM-1 in MCF-7 and HCC1937 cells, and G1 treatment showed this effect only in MCF-7 cells. The results suggest that GPER1 might be a significant inflammatory modulator with angiogenic-related effects in BC cells. In addition, pentolame might represent an HRT alternative in patients with BC predisposition.
Collapse
Affiliation(s)
- Segovia-Mendoza Mariana
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Reyes-Plata Brenda
- Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México,Ciudad de México, Mexico
| | - Prado-Garcia Heriberto
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas" Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Lemini Cristina
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Barrera David
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México 14080, Mexico
| | - Ángeles-López Guadalupe
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Shi Y, Xu P. Unveiling the Immune Landscape of Delirium through Single-Cell RNA Sequencing and Machine Learning: Towards Precision Diagnosis and Therapy. Psychogeriatrics 2025; 25:e13233. [PMID: 39814058 DOI: 10.1111/psyg.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Postoperative delirium (POD) poses significant clinical challenges regarding its diagnosis and treatment. Identifying biomarkers that can predict and diagnose POD is crucial for improving patient outcomes. METHODS To explore potential biomarkers for POD, we conducted bulk RNA sequencing (bulk-seq) on peripheral blood samples from POD patients and healthy controls. The expression levels of genes downstream of the phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signalling pathway were analysed. We then validated the expression of these genes using quantitative real-time polymerase chain reaction (RT-qPCR) in an independent cohort of 30 healthy controls and 30 POD patients. Receiver operating characteristic (ROC) analysis and six machine learning models were used to evaluate the predictive and diagnostic value of these genes. Additionally, single-cell RNA sequencing (scRNA-seq) was performed to validate gene expression in specific subsets of peripheral blood mononuclear cells (PBMCs), including T-cells, B-cells, natural killer (NK) cells, dendritic cells (DCs), and monocytes. RESULTS Bulk-seq revealed increased expression of genes downstream of the PI3K-Akt signalling pathway, specifically CHRM2, IL6, NOS3, NGF, and IL6R, in the peripheral blood of POD patients compared to healthy controls. Conversely, the expression of IGF1 was significantly decreased. RT-qPCR validation confirmed these findings. ROC analysis and machine learning models indicated that these genes are useful for predicting and diagnosing POD. scRNA-seq further validated the expression of these genes in specific PBMC subsets, including T-cells, B-cells, NK cells, DCs, and monocytes, with results consistent with the bulk-seq and RT-qPCR data. CONCLUSIONS The abnormal activation of the PI3K-Akt signalling pathway in T-cells, B-cells, NK cells, DCs, and monocytes may serve as potential biomarkers for predicting and diagnosing POD. These findings could inform the development of novel therapeutic strategies for managing POD.
Collapse
Affiliation(s)
- Yingna Shi
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Peipei Xu
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
22
|
Ishikawa E, Watanabe T, Kihara T, Kuroiwa M, Komatsu M, Urano S, Nagahashi M, Hirota S, Miyoshi Y. The cytokine profile correlates with less tumor-infiltrating lymphocytes in luminal A breast cancer. Breast Cancer Res Treat 2025; 209:291-302. [PMID: 39402242 PMCID: PMC11785682 DOI: 10.1007/s10549-024-07492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE Tumor-infiltrating lymphocyte (TIL) levels are prognostic and predictive factors for breast cancer. Unlike other subtypes, most luminal A breast cancers are immune deserts; however, the underlying mechanisms are poorly understood. METHODS Immune-related cytokines, chemokines, and growth factors were measured in the sera of 103 patients with breast cancer using a multiplex panel. The TILs were evaluated for hotspot lesions. RESULTS Circulating interleukin 1 receptor antagonist (IL-1ra), IL-8, IL-12, IL-17, macrophage inflammatory protein-1β (MIP-1b), and platelet-derived growth factor B homodimer (PDGF-bb) concentrations were significantly associated with TIL levels. Cluster analysis using these six variables identified six clusters related to TIL levels. Breast cancers with high TILs (≥ 50%) were most frequent in cluster 3 (9 out of 15 cases, 60.0%), followed by cluster 1 (8 out of 34 cases, 23.5%), and the fewest in cluster 6 (1 out of 21 cases, 4.8%), whereas only one or three cases were present in clusters 2, 4, and 5 (p = 0.0064). Cluster 6, consisting mostly of luminal A (19 out of 21 cases, 90.5%), showed high levels of IL-12, IL-17, and PDGF-bb, and low levels of MIP-1b. CONCLUSION We identified a luminal A-associated immunosuppressive cytokine signature in circulation. These results suggest that a tumor microenvironment with high levels of IL-17 and PDGF-bb, and low levels of MIP-1b in luminal A breast cancers results in low induction of TILs. Our data may partially explain the low TIL levels observed in the patients with luminal A breast cancer.
Collapse
Affiliation(s)
- Eri Ishikawa
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Takahiro Watanabe
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
- Department of Clinical Pathology, Chibune General Hospital, Osaka, Japan
| | - Takako Kihara
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Mamiko Kuroiwa
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Miki Komatsu
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Sayaka Urano
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Masayuki Nagahashi
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan.
| |
Collapse
|
23
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Ciechanover A. CXCL12 restricts tumor growth by suppressing the Ras, ERK1/2, c-Myc, and the immune checkpoint PD-L1 pathways. Proc Natl Acad Sci U S A 2024; 121:e2416909121. [PMID: 39689179 DOI: 10.1073/pnas.2416909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Cytokines constitute a family of proteins that modulate the immune system and are secreted by many cells. CXCL12, along with its receptor CXCR4, are essential players in numerous processes. Dysregulation of their function underlie the mechanism(s) of several pathologies, including malignancies. Here, we demonstrate an unexpected effect of the cytokine and its receptor: In both cells and animal models, CXCL12 restricts tumorigenicity of the human glioblastoma cells U87-MG and U-118, and of a cell line derived from PyMT mouse breast cancer. Overexpression of CXCL12 inhibits activation of the oncogene Ras which results in downregulation of its proliferative signals, such as reduced phosphorylation of the extracellular signal-regulated kinase 1/2 (ERK1/2), inhibition of c-Myc expression, and subsequent inhibition of cell cycle. Furthermore, CXCL12 induces downregulation of the growth differentiation factor 15 (GDF15), insulin-like growth factor-binding protein 6 (IGFBP6), and matrix metalloproteinase-3 (MMP3), which are implicated in sending metastases. Indeed, monitoring cell migration in vitro and generation of metastases in mice demonstrate that CXCL12 slows the migration of U87-MG and PyMT cells. Remarkably, overexpression of CXCL12 also downregulates the cell surface immune checkpoint protein programmed cell death-ligand 1 (PD-L1), resulting in recruitment of cytotoxic CD8 T cells into xenografts accompanied by their shrinkage. Overall, CXCL12 inhibits tumor growth through several distinct mechanisms: inhibition of cell cycle and migration, as well as impairment of immune checkpoint, thereby stimulating a strong host's immune response. The mechanism(s) that renders CXCL12 a tumor-promoting factor in certain cells and a suppressor in others has remained elusive.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
24
|
Guo X, Zuo Z, Wang X, Sun Y, Xu D, Liu G, Tong Y, Zhang Z. Epidemiology, risk factors and mechanism of breast cancer and atrial fibrillation. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:92. [PMID: 39716319 DOI: 10.1186/s40959-024-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Cancer and cardiovascular diseases are leading causes of death worldwide. Among them, breast cancer is one of the most common malignancies in women, while atrial fibrillation is one of the most extensively studied arrhythmias, with significant public health implications. As the global population ages and advancements in cancer treatments continue, the survival rates of breast cancer patients have significantly improved, leading to an increasing coexistence of breast cancer and atrial fibrillation. However, the mechanisms underlying this coexistence remain insufficiently studied, and there is no consensus on the optimal treatment strategies for these patients. This review consolidates existing research to systematically explore the epidemiological characteristics, risk factors, and pathophysiological mechanisms of both breast cancer and atrial fibrillation. It focuses on the unique signaling pathways associated with different molecular subtypes of breast cancer and their potential impact on the mechanisms of atrial fibrillation. Additionally, the relationship between atrial fibrillation treatment medications and breast cancer is discussed. These insights not only provide essential evidence for the precise prevention and management of atrial fibrillation in breast cancer patients but also lay a solid theoretical foundation for interdisciplinary clinical management practices.
Collapse
Affiliation(s)
- Xiaoxue Guo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zheng Zuo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xishu Wang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ying Sun
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Dongyang Xu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Guanghui Liu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yi Tong
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
25
|
Wang Y, Zheng Y, Tian C, Yu J, Rao K, Zeng N, Jiang P. Nomogram Based on Immune-Inflammatory Score and Classical Clinicopathological Parameters for Predicting the Recurrence of Endometrial Carcinoma: A Large, Multi-Center Retrospective Study. J Inflamm Res 2024; 17:11437-11449. [PMID: 39735898 PMCID: PMC11675361 DOI: 10.2147/jir.s494716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Background Surgery is the best approach to treat endometrial cancer (EC); however, there is currently a deficiency in effective scoring systems for predicting EC recurrence post-surgical resection. This study aims to develop a clinicopathological-inflammatory parameters-based nomogram to accurately predict the postoperative recurrence-free survival (RFS) rate of EC patients. Methods A training set containing 1068 patients and an independent validation set consisting of 537 patients were employed in this retrospective study. The prognostic factors for RFS were identified by univariable and multivariable Cox proportional hazards regression analyses, and integrated into nomogram. The C-index, area under the curves (AUC), and calibration curves were employed to determine the predictive discriminability and accuracy of nomogram. Utilizing the nomogram, patients were stratified into low- and high-risk groups, and the Kaplan-Meier survival curve was further employed to assess the clinical efficacy of the model. Results Cox regression analyses revealed that age (HR = 1.769, P = 0.002), FIGO staging (HR = 1.790, P = 0.018), LVSI (HR = 1.654, P = 0.017), Ca125 (HR = 1.532, P = 0.023), myometrial invasion (HR = 1.865, P = 0.001), cervical stromal invasion (HR = 1.655, P = 0.033), histology (HR = 2.637, P < 0.001), p53 expression (HR = 1.706, P = 0.002), PLR (HR = 1.971, P = 0.003), SIRI (HR = 2.187, P = 0.003), and adjuvant treatment (HR = 0.521, P = 0.003) were independent prognostic factors for RFS in patients with EC. A combined clinicopathologic-inflammatory parameters model was constructed, which outperformed the single-indicator model and other established models in predicting the 1-, 3-, and 5-year RFS rates in patients with EC. Conclusion The nomogram demonstrated sufficient accuracy in predicting the RFS probabilities of EC, enabling personalized clinical decision-making for future clinical endeavors.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Gynecology, Yubei District People’s Hospital, Chongqing, 401120, People’s Republic of China
| | - Yunfeng Zheng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chenfan Tian
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiaxin Yu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Kunying Rao
- Department of Gynecology, Yubei District People’s Hospital, Chongqing, 401120, People’s Republic of China
| | - Na Zeng
- Department of Gynecology, Yubei District People’s Hospital, Chongqing, 401120, People’s Republic of China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
26
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
27
|
Zhu M, Xing M, Sun R, Li M, Qian W, Fan M. Identification of potential immune-related genes and infiltrations in temporomandibular joint osteoarthritis. Ann Med Surg (Lond) 2024; 86:7135-7146. [PMID: 39649914 PMCID: PMC11623849 DOI: 10.1097/ms9.0000000000002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/12/2024] [Indexed: 12/11/2024] Open
Abstract
Objective The aim of this study was to investigate the potential inflammatory cytokines and chemokines markers for temporomandibular joint osteoarthritis (TMJOA) diagnosis using a bioinformatics analysis. Methods The differentially expressed genes of mRNA (DEGs) and transcripts of lncRNA (DETs) were identified between TMJOA samples and normal controls curated from GSE205389 by the "DESeq. 2" R package. KEGG and GO were conducted using the R package "ggplot2" and "clusterProfiler". A PPI network was constructed to identify hub genes by using the STRING and Cytoscape. The co-expression network was constructed between mRNA and lncRNA to check the potential regulation and function of lncRNA on protein-coding genes. Finally, the immune cell infiltration analysis was conducted with CIBERSORTx and confirmed with xCells. Results The authors identified 171 DEGs and DETs, of which the DEGs were closely related to immune response, T-cell activation, cytokine-cytokine-receptor interaction, and the muscle system process. PPI network of the DEGs screened the top 10 hub genes, including IL6, IL1B, IL10, CCL2, CCL5, CXCL1, CXCL10, ICAM1, CSF1 and MMP1. Additionally, the immune cell infiltration analysis showed that CD8+ T cells, M1 macrophage and B cells infiltration were increased in TMJOA samples. Finally, the authors demonstrated that the co-expression between mRNA and lncRNA was mainly enriched in inflammatory and muscle-related pathways. Conclusions The authors found that immune and muscle system-related pathways as well as the immune infiltration played a significant role in the TMJOA development. Additionally, inflammatory cytokines and chemokines could be crucial markers for early-stage TMJOA diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Orthodontics, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Min Xing
- Dental Laboratory, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Ruinan Sun
- Department of Endodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji Research Institute of Stomatology, Shanghai, China
| | - Minhui Li
- Department of vascular surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhao Qian
- Department of Oral Implantology, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Mingyue Fan
- Department of Orthodontics, Shanghai Xuhui District Dental Center, Shanghai, China
| |
Collapse
|
28
|
Hasan R, Bhuia MS, Chowdhury R, Saha S, Khan MA, Afroz M, Ansari SA, Ansari IA, Melo Coutinho HD, Islam MT. Abietic acid antagonizes the anti-inflammatory effects of celecoxib and ketoprofen: Preclinical assessment and molecular dynamic simulations. Comput Biol Med 2024; 183:109298. [PMID: 39454522 DOI: 10.1016/j.compbiomed.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The present work is designed to explore the anti-inflammatory properties of AA and its modulatory effects on celecoxib (CEL) and ketoprofen (KET) through in vitro, ex vivo, in vivo, and in silico approaches. Different concentrations of AA were utilized to evaluate the membrane-stabilizing potential via egg albumin and the Human Red Blood Cell (HRBC) denaturation model. In the animal model, formalin (50 μL) was injected into the right hind paw of young chicks to induce inflammation. AA was administered at 20 and 40 mg/kg (p.o.) to the experimental animals. We used CEL and KET as positive controls. The vehicle was provided as a control group. Two combinations of AA with CEL and KET were also investigated in all tests to assess the modulatory activity of AA. In addition, in silico investigation was used for predictions about drug-likeness, pharmacokinetics, and toxicity of the selected chemical compounds, and the study also evaluated the binding affinity, visualization, and stability of ligand-receptor interactions through molecular dynamic (MD) simulation. Results manifested that AA concentration-dependently significantly inhibited the egg albumin denaturation (IC50: 27.53 ± 0.88 μg/ml) and breakdown of HRBC (IC50: 15.69 ± 0.75 μg/ml), indicating the membrane stabilizing potential compared to the control group. AA also significantly (p < 0.05) lessened the frequency of licking and alleviated the paw edema in a dose-dependent manner in an in vivo test. However, AA reduced the activity of CEL and KET in combination treatment. AA showed good pharmacokinetic characteristics to be considered as a therapeutic candidate. Additionally, the in silico study displayed that AA demonstrated a relatively higher docking score of -9.1 kcal/mol with the cyclooxygenase-2 (COX-2) enzyme and stable binding in MD simulation. Whereas the standard ligand (CEL) expressed the highest binding value of -9.2 kcal/mol to the COX-2.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Sajib Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, 10124, Italy.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| |
Collapse
|
29
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
31
|
Shen S, Qiu X, Yang C, Li J, Peng Y, Wen Z, Luo H, Xiang B. Prognostic importance of the Scottish inflammatory prognostic score in patients with hepatocellular carcinoma after hepatectomy: a retrospective cohort study. BMC Cancer 2024; 24:1393. [PMID: 39533231 PMCID: PMC11559137 DOI: 10.1186/s12885-024-13174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The Scottish Inflammatory Prognostic Score (SIPS), an innovative scoring system, has emerged as a promising biomarker for predicting patient outcomes following cancer therapy. This study aimed to evaluate the value of SIPS as a prognostic indicator following hepatectomy in patients with hepatocellular carcinoma (HCC). METHODS This retrospective study included 693 HCC patients who underwent hepatectomy. Survival outcomes were compared between propensity score-matched groups. Independent prognostic factors were identified through Cox regression analysis. Additionally, both traditional Cox proportional hazards models and machine learning models based on the SIPS were developed and validated. RESULTS A total of 693 HCC patients who underwent hepatectomy were included, with 102 in the high SIPS group and 591 in the low SIPS group. Following propensity score matching (1:3 ratio), both groups achieved balance, with 82 patients in the high SIPS group and 240 patients in the low SIPS group. The low SIPS group demonstrated significantly superior recurrence-free survival (RFS) (25 months vs. 21 months; P < 0.001) and overall survival (OS) (69 months vs. 58 months; P < 0.001) compared to the high SIPS group. Multivariable analysis identified SIPS as an independent adverse factor affecting both RFS and OS. The calibration curve for overall patient survival diagnosis displayed excellent predictive accuracy. Traditional COX prognostic models and machine learning models incorporating SIPS demonstrated excellent performance both the training and validation set. CONCLUSION This study confirms the prognostic significance of SIPS in post-hepatectomy HCC patients, providing a practical tool for risk stratification and clinical decision-making. Further research and validation are needed to consolidate its role in prognostic assessment.
Collapse
Affiliation(s)
- Shuang Shen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China
| | - Xin Qiu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jindu Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yi Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zhaochan Wen
- Oncology School, Guangxi Medical University, Nanning, 530021, China
| | - Huili Luo
- College of Basic Medicine, Guangxi Medical University, Nanning, 530199, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
32
|
Elkordy AA, Hill D, Attia M, Chaw CS. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1760. [PMID: 39513840 PMCID: PMC11547384 DOI: 10.3390/nano14211760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most noticeable pathophysiological effect of psoriasis is the abnormal proliferation of keratinocytes. Breast cancer is currently the most diagnosed cancer and the leading cause of cancer-related death among women globally. While treatments targeting the primary tumor have significantly improved, preventing metastasis with systemic treatments is less effective. Nanocarriers such as liposomes and lipid nanoparticles have emerged as promising drug delivery systems for drug targeting and specificity. Advances in technologies and drug combinations have emerged to develop more efficient lipid nanocarriers to include more than one drug in combinational therapy to enhance treatment outcomes and/or relief symptoms for better patients' quality of life. Although there are FDA-approved liposomes with anti-cancer drugs for breast cancer, there are still unmet clinical needs to reduce the side effects associated with those nanomedicines. Hence, combinational nano-therapy may eliminate some of the issues and challenges. Furthermore, there are no nanomedicines yet clinically available for psoriasis. Hence, this review will focus on liposomes encapsulated single and/or combinational therapy to augment treatment outcomes with an emphasis on the effectiveness of combinational therapy within liposomal-based nanoparticulate drug delivery systems to tackle psoriasis and breast cancer. This review will also include an overview of both diseases, challenges in delivering drug therapy and the roles of nanomedicines as well as psoriasis and breast cancer models used for testing therapeutic interventions to pave the way for effective in vivo testing prior to the clinical trials.
Collapse
Affiliation(s)
- Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - David Hill
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| | - Mohamed Attia
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| |
Collapse
|
33
|
Cullinane C, Connolly RM, Corrigan M, Redmond HP, Foley C. Perioperative systemic IL-6 and immune-adipose- metabolism transcription in tumour and tumour adjacent breast cancer. Eur J Immunol 2024; 54:e2451049. [PMID: 39219238 DOI: 10.1002/eji.202451049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Surgical resection is the primary treatment approach for patients with breast cancer. Despite optimal multimodal treatment, metastatic recurrence remains a risk. Surgery-mediated systemic inflammation and local tissue inflammation generate an immunosuppressive and wound-healing environment that may accelerate cancer recurrence and metastasis post-operatively. Investigating the impact of surgery on local and systemic inflammation may provide knowledge for improvement of patient prognosis and treatment opportunities. Systemic cytokines were quantified in the blood plasma of patients with breast cancer pre-operatively, early post-operatively, and late post-operatively. Early post-operative levels of IL-6 were significantly elevated in patients who underwent mastectomy compared with wide local excision. Post-operative IL-6 levels correlate with clinicopathological features (age and BMI). The transcriptomes of local matched tumour and normal tumour adjacent (normal) breast tissue, from patients with breast cancer, were analysed by RNA-Seq. Elevated gene expressions of IL6, ADIPOQ, FABP4, LPL, PPARG, and CD36 in normal tissue were associated with worse overall survival of patients with ER-positive breast cancer. In tissue with higher expression of IL6 and ADIPOQ, a higher abundance of M2-like macrophage gene expression was identified. This study revealed perioperative systemic dynamics of inflammatory mediators and identified local immune-adipose-metabolism gene expression in tumour-adjacent tissue associated with pro-tumour function.
Collapse
Affiliation(s)
- Carolyn Cullinane
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Roisin M Connolly
- Cork University Hospital, Wilton, Cork, Ireland
- Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mark Corrigan
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry P Redmond
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Cathriona Foley
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
34
|
He Y, Wang D, Zhang C, Huang S, Li X, Chen Y, Ma Y, Ju S, Ye H, Fan W. EGFR-targeting oxygen-saturated nanophotosensitizers for orchestrating multifaceted antitumor responses by counteracting immunosuppressive milieu. J Control Release 2024; 375:127-141. [PMID: 39233281 DOI: 10.1016/j.jconrel.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
High Epidermal growth factor receptor (EGFR) in Cutaneous Squamous Cell Carcinoma (cSCC) is associated with poor prognosis and advanced metastatic stages, severely impeding the efficacy of EGFR-targeting immunotherapy. This is commonly attributed to the combinatory outcomes of hypoxic tumor microenvironment (TME) and immunosuppressive effector cells together. Herein, a novel paradigm of EGFR-targeting oxygen-saturated nanophotosensitizers, designated as CHPFN-O2, has been specifically tailored to mitigate tumor hypoxia in EGFR-positive cSCC and achieve Cetuximab (CTX)-mediated immunotherapy (CIT). The conjugated CTX in CHPFN-O2 serves to initiate immune responses by recruiting Fc receptor (FcR)-expressing immune effector cells towards tumor cells, thereby eliciting antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular trogocytosis (ADCT) and antibody-dependent cellular cytotoxicity (ADCC). Besides, CHPFN-O2 can engender a shift from a tumor-friendly to a tumor-hostile one through improved tumor oxygenation, contributing to oxygen-elevated photodynamic therapy (oxPDT). Notably, the combination of oxPDT and CIT eventually promotes T-cell-mediated antitumor activity and successfully inhibits the growth of EGFR-expressing cSCC with good safety profiles. This comprehensive oxPDT/CIT integration aims not only to enhance therapeutic efficacy against EGFRhigh cSCC but also to extend its applicability to other EGFRhigh malignancies, thus delineating a new avenue for the highly efficient synergistic treatment of EGFR-expressing malignancies.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Deng Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangzheng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongxun Ye
- Department of Radiology, Taixing People's Hospital, Medical School, Yangzhou University, Taixing 225400, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
35
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
36
|
Wang Y, Gao B, Jiao T, Zhang W, Shi H, Jiang H, Li X, Li J, Ge X, Pan K, Li C, Mao G, Lu S. CCL5/CCR5/CYP1A1 pathway prompts liver cancer cells to survive in the combination of targeted and immunological therapies. Cancer Sci 2024; 115:3552-3569. [PMID: 39183447 PMCID: PMC11531955 DOI: 10.1111/cas.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.
Collapse
Affiliation(s)
- Yafei Wang
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Biao Gao
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Tianyu Jiao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Wenwen Zhang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Huizhong Shi
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Hao Jiang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xuerui Li
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Junfeng Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xinlan Ge
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Ke Pan
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Chonghui Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Guankun Mao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Shichun Lu
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| |
Collapse
|
37
|
Xiong N, Han W, Yu Z. ABO Blood Type and Pretreatment Systemic Inflammatory Response Index Associated with Lymph Node Metastasis in Patients with Breast Cancer. Int J Gen Med 2024; 17:4823-4833. [PMID: 39465189 PMCID: PMC11512788 DOI: 10.2147/ijgm.s486873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor for breast cancer. Inflammatory stimulation can change tumor microenvironment and lead to LNM, but the relationship between LNM and peripheral immunoinflammatory indices has not been clarified in breast cancer. Methods The clinical information of 1918 patients with breast cancer admitted to Meizhou People's Hospital from October 2017 to December 2023 were retrospectively analyzed. The relationship of clinicopathological features (age, body mass index (BMI), ABO blood types, family history of cancer, tumor site, disease stage, LNM, distant metastasis, and molecular subtypes) and peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) were analyzed. Results There were 935 (48.7%) patients had no LNM and 983 (51.3%) had LNM. There were statistically significant differences in the distributions of ABO blood groups (p=0.022) and molecular subtypes (p<0.001) between the two groups. PIV, SII, and SIRI levels in patients with LNM were significantly higher than those without LNM (all p<0.05). The proportions of LNM in patients with high PIV, SII, and SIRI levels were higher than those with low PIV, SII, and SIRI levels, respectively. Logistic regression analysis showed that non-O blood type (non-O blood type vs O blood type, odds ratio (OR): 1.327, 95% confidence interval (CI): 1.056-1.667, p=0.015), luminal B subtype (luminal B vs luminal A, OR: 2.939, 95% CI: 2.147-4.022, p<0.001), HER2+ subtype (HER2+ vs luminal A, OR: 2.044, 95% CI: 1.388-3.009, p<0.001), and high SIRI level (≥0.875 vs <0.875, OR: 1.572, 95% CI: 1.092-2.265, p=0.015) were independently associated with LNM. Conclusion Non-O blood type, luminal B and HER2+ subtypes, and high SIRI level (≥0.875) have potential role in predicting the status of LNM in breast cancer patients.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhikang Yu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
38
|
Skapinker E, Aucoin EB, Kombargi HL, Yaish AM, Li Y, Baghaie L, Szewczuk MR. Contemporaneous Inflammatory, Angiogenic, Fibrogenic, and Angiostatic Cytokine Profiles of the Time-to-Tumor Development by Cancer Cells to Orchestrate Tumor Neovascularization, Progression, and Metastasis. Cells 2024; 13:1739. [PMID: 39451257 PMCID: PMC11506673 DOI: 10.3390/cells13201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytokines can promote various cancer processes, such as angiogenesis, epithelial to mesenchymal transition (EMT), invasion, and tumor progression, and maintain cancer stem-cell-like (CSCs) cells. The mechanism(s) that continuously promote(s) tumors to progress in the TME still need(s) to be investigated. The data in the present study analyzed the inflammatory, angiogenic, fibrogenic, and angiostatic cytokine profiles in the host serum during tumor development in a mouse model of human pancreatic cancer. Pancreatic MiaPaCa-2-eGFP cancer cells were subcutaneously implanted in RAG2xCγ double mutant mice. Blood samples were collected before cancer cell implantation and every week until the end point of the study. The extracted serum from the blood of each mouse at different time points during tumor development was analyzed using a Bio-Plex microarray analysis and a Bio-Plex 200 system for proinflammatory (IL-1β, IL-10, IFN-γ, and TNF-α) and angiogenic and fibrogenic (IL-15, IL-18, basic FGF, LIF, M-CSF, MIG, MIP-2, PDGF-BB, and VEGF) cytokines. Here, we find that during cancer cell colonization for tumor development, host angiogenic, fibrogenic, and proinflammatory cytokine profiling in the tumor-bearing mice has been shown to significantly reduce host angiostatic and proinflammatory cytokines that restrain tumor development and increase those for tumor growth. The proinflammatory cytokines IL-15, IL-18, and IL-1β profiles reveal a significant host serum increase after day 35 when the tumor began to progress in growth. In contrast, the angiostatic cytokine profiles of TNFα, MIG, M-CSF, IL-10, and IFNγ in the host serum revealed a dramatic and significant decrease after day 5 post-implantation of cancer cells. OP treatment of tumor-bearing mice on day 35 maintained high levels of angiostatic and fibrogenic cytokines. The data suggest an entirely new regulation by cancer cells for tumor development. The findings identify for the first time how pancreatic cancer cells use host cytokine profiling to orchestrate the initiation of tumor development.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Emilyn B. Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Haley L. Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Abdulrahman M. Yaish
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
39
|
Heimes AS, Shehaj I, Almstedt K, Krajnak S, Schwab R, Stewen K, Lebrecht A, Brenner W, Hasenburg A, Schmidt M. Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer. Int J Mol Sci 2024; 25:11114. [PMID: 39456897 PMCID: PMC11507514 DOI: 10.3390/ijms252011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Interleukins play dual roles in breast cancer, acting as both promoters and inhibitors of tumorigenesis within the tumor microenvironment, shaped by their inflammatory functions. This study analyzed the subtype-specific prognostic significance of an acute inflammatory versus a chronic inflammatory interleukin signature using microarray-based gene expression analysis. Correlations between these interleukin signatures and immune cell markers (CD8, IgKC, and CD20) and immune checkpoints (PD-1) were also evaluated. This study investigated the prognostic significance of an acute inflammatory IL signature (IL-12, IL-21, and IFN-γ) and a chronic inflammatory IL signature (IL-4, IL-5, IL-10, IL-13, IL-17, and CXCL1) for metastasis-free survival (MFS) using Kaplan-Meier curves and Cox regression analyses in a cohort of 461 patients with early breast cancer. Correlations were analyzed using the Spearman-Rho correlation coefficient. Kaplan-Meier curves revealed that the prognostic significance of the acute inflammatory IL signature was specifically pronounced in the basal-like subtype (p = 0.004, Log Rank). This signature retained independent prognostic significance in multivariate Cox regression analysis (HR 0.463, 95% CI 0.290-0.741; p = 0.001). A higher expression of the acute inflammatory IL signature was associated with longer MFS. The chronic inflammatory IL signature showed a significant prognostic effect in the whole cohort, with higher expression associated with shorter MFS (p = 0.034). Strong correlations were found between the acute inflammatory IL signature and CD8 expression (ρ = 0.391; p < 0.001) and between the chronic inflammatory IL signature and PD-1 expression (ρ = 0.627; p < 0.001). This study highlights the complex interaction between acute and chronic inflammatory interleukins in breast cancer progression and prognosis. These findings provide insight into the prognostic relevance of interleukin expression patterns in breast cancer and may inform future therapeutic strategies targeting the immune-inflammatory axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (A.-S.H.); (I.S.); (K.A.); (S.K.); (R.S.); (K.S.); (A.L.); (W.B.); (A.H.)
| |
Collapse
|
40
|
Pavlik T, Konchekov E, Shimanovskii N. Antitumor progestins activity: Cytostatic effect and immune response. Steroids 2024; 210:109474. [PMID: 39048056 DOI: 10.1016/j.steroids.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Progestins are used to treat some hormone-sensitive tumors. This review discusses the mechanisms of progestins' effects on tumor cells, the differences in the effects of progesterone and its analogs on different tumor types, and the influence of progestins on the antitumor immune response. Progestins cause a cytostatic effect, but at the same time they can suppress the antitumor immune response, and this can promote the proliferation and metastasis of tumor cells. Such progestins as dienogest, megestrol acetate and levonorgestrel increase the activity of NK-cells, which play a major role in the body's fight against tumor cells. The use of existing progestins and the development of new drugs with gestagenic activity may hold promise in oncotherapy.
Collapse
Affiliation(s)
- T Pavlik
- Pirogov Russian National Research Medical University, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia.
| | - E Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Peoples Friendship University of Russia (RUDN University), Russia
| | - N Shimanovskii
- Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
41
|
Metwally YF, Elsaid AM, Elsadda RR, Refaat S, Zahran RF. Impact of IL-6 and IL-1β Gene Variants on Non-small-cell Lung Cancer Risk in Egyptian Patients. Biochem Genet 2024; 62:3367-3388. [PMID: 38103126 PMCID: PMC11427554 DOI: 10.1007/s10528-023-10596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Lung cancer is a serious health and life issue, with the fastest-growing incidence and fatality rates worldwide. It is now clear that inflammation is a key factor involved in all aspects of carcinogenesis, notably lung cancer development. Genetic changes, including polymorphisms in inflammatory genes, are supposed to be a significant cause of increased lung cancer risk. The main idea of this research was to disclose the linkage between both IL-6 rs1800795 and IL-1β rs16944 variants and susceptibility to non-small-cell lung cancer (NSCLC) in Egyptians. This case-control design was composed of 127 cases and 138 controls, which were genotyped using the ARMS-PCR technique. To examine the NSCLC susceptibility under various genetic models, the odds ratio (OR) and 95% confidence intervals (CIs) were determined by logistic regression. Rs1800795 of the IL-6 gene was linked to higher odds of NSCLC under the allele model (adjusted, OR 2.28; 95% CI 1.2-4.33; p = 0.011). In the genetic models, IL-6 rs1800795 elevated the odds of NSCLC, while IL-1β rs16944 decreased the odds of NSCLC. Stratification analysis showed that IL-6 rs1800795 greatly increased the NSCLC risk in females and adenocarcinoma subtypes, whereas IL-1β rs16944 largely decreased the NSCLC risk for males, patients aged < 55, and nonsmokers. Regarding clinical data, the IL-6 variant was remarkably correlated with tumor size. This work primarily established that IL-6 and IL-1β variants have a great impact on NSCLC development in the Egyptian population; thus, it may be a supportive guide for earlier NSCLC prevention.
Collapse
Affiliation(s)
- Yomna F Metwally
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt.
| | - Afaf M Elsaid
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Rana R Elsadda
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Sherif Refaat
- Oncology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Rasha F Zahran
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
42
|
Chen X, Peng H, Zhang Z, Yang C, Liu Y, Chen Y, Yu F, Wu S, Cao L. SPDYC serves as a prognostic biomarker related to lipid metabolism and the immune microenvironment in breast cancer. Immunol Res 2024; 72:1030-1050. [PMID: 38890248 DOI: 10.1007/s12026-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer remains the most common malignant carcinoma among women globally and is resistant to several therapeutic agents. There is a need for novel targets to improve the prognosis of patients with breast cancer. Bioinformatics analyses were conducted to explore potentially relevant prognostic genes in breast cancer using The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases. Gene subtypes were categorized by machine learning algorithms. The machine learning-related breast cancer (MLBC) score was evaluated through principal component analysis (PCA) of clinical patients' pathological statuses and subtypes. Immune cell infiltration was analyzed using the xCell and CIBERSORT algorithms. Kyoto Encyclopedia of Genes and Genomes enrichment analysis elucidated regulatory pathways related to speedy/RINGO cell cycle regulator family member C (SPDYC) in breast cancer. The biological functions and lipid metabolic status of breast cancer cell lines were validated via quantitative real-time polymerase chain reaction (RT‒qPCR) assays, western blotting, CCK-8 assays, PI‒Annexin V fluorescence staining, transwell assays, wound healing assays, and Oil Red O staining. Key differentially expressed genes (DEGs) in breast cancer from the TCGA and GEO databases were screened and utilized to establish the MLBC score. Moreover, the MLBC score we established was negatively correlated with poor prognosis in breast cancer patients. Furthermore, the impacts of SPDYC on the tumor immune microenvironment and lipid metabolism in breast cancer were revealed and validated. SPDYC is closely related to activated dendritic cells and macrophages and is simultaneously correlated with the immune checkpoints CD47, cytotoxic T lymphocyte antigen-4 (CTLA-4), and poliovirus receptor (PVR). SPDYC strongly correlated with C-C motif chemokine ligand 7 (CCL7), a chemokine that influences breast cancer patient prognosis. A significant relationship was discovered between key genes involved in lipid metabolism and SPDYC, such as ELOVL fatty acid elongase 2 (ELOVL2), malic enzyme 1 (ME1), and squalene epoxidase (SQLE). Potent inhibitors targeting SPDYC in breast cancer were also discovered, including JNK inhibitor VIII, AICAR, and JW-7-52-1. Downregulation of SPDYC expression in vitro decreased proliferation, increased the apoptotic rate, decreased migration, and reduced lipid droplets. SPDYC possibly influences the tumor immune microenvironment and regulates lipid metabolism in breast cancer. Hence, this study identified SPDYC as a pivotal biomarker for developing therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhentao Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Changnian Yang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yingqi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanzhen Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Promny T, Scherrer I, Kadam S, Schmid R, Jost T, Distel LV, Arkudas A, Horch RE, Kengelbach-Weigand A. The Effect of Ionizing Irradiation on the Autotaxin-Lysophasphatidic Acid Axis and Interleukin-6/8 Secretion in Different Breast Cancer Cell Lines. J Pers Med 2024; 14:968. [PMID: 39338222 PMCID: PMC11433306 DOI: 10.3390/jpm14090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable breast cancer subtypes for targeted therapies. METHODS Different breast cancer cell lines (MCF-7 (luminal A), BT-474 (luminal B), SKBR-3 (HER2-positive), MDA-MB-231 and MDA-MB-468 (triple-negative)) and the breast epithelial cell line MCF-10A were irradiated. The influence of irradiation on LPA receptor (LPAR) expression, ATX expression, and Interleukin (IL)-6 and IL-8 secretion was analyzed. Further, the effect of IL-6 and IL-8 on ATX expression of adipose-derived stem cells (ADSC) was investigated. RESULTS Irradiation increased ATX and LPAR2 expression in MDA-MB-231 cells. Additionally, IL-6 secretion was enhanced in MDA-MB-231, and IL-8 secretion in MDA-MB-231 and MDA-MB-468. Stimulation of ADSC with IL-6 and IL-8 increased ATX expression in ADSC. CONCLUSIONS Targeting ATX or its downstream signaling pathways might enhance the sensitivity of triple-negative breast cancer cells to radiation. Further exploration of the interplay between irradiation, the ATX-LPA axis, and inflammatory cytokines may elucidate novel pathways for overcoming radioresistance and improving individual treatment outcomes.
Collapse
Affiliation(s)
- Theresa Promny
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Isabell Scherrer
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sheetal Kadam
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
44
|
Tirgar A, Rezaei M, Ehsani M, Salmani Z, Rastegari A, Jafari E, Khandani BK, Nakhaee N, Khaksari M, Moazed V. Exploring the synergistic effects of vitamin D and synbiotics on cytokines profile, and treatment response in breast cancer: a pilot randomized clinical trial. Sci Rep 2024; 14:21372. [PMID: 39266591 PMCID: PMC11393349 DOI: 10.1038/s41598-024-72172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
This study was designed to investigate the effect of vitamin D and/or synbiotics on the response to treatment, cytokines profile and hormonal biomarkers in breast cancer patients undergoing neoadjuvant therapy. A total of 76 patients were recruited and completed the course of the intervention between 2019 and 2021 in Kerman, Iran. breast cancer patients were randomly enrolled in this study. Patients divided into four groups to receive one of the following regimens: placebo, vitamin D, synbiotics and a combination of vitamin D and synbiotics. clinicopathologic parameters, inflammatory and anti-inflammatory biomarkers and hormonal levels were measured at the baseline and four months after intervention. The study results found no clear link between the interventions and achieving pathological complete response (pCR), and a similar trend was observed in Ki-67 index examination. After neoadjuvant therapy, TNF-α concentrations decreased, with vitamin D supplementation moderating this decline. Vitamin D supplemented groups showed a significant increase in serum IL-6 levels. While IL-10 levels decreased in the placebo group, all intervention groups were protected from this decline. Moreover, there was a notable increase in the anti-inflammatory index, particularly in the group receiving both vitamin D and synbiotic supplementation, suggesting potential synergistic anti-inflammatory effects from their combined administration. The outcomes suggest a potential anti-inflammatory function of this combination. Consequently, more extensive studies with prolonged follow-up periods and substantial sample sizes are warranted to thoroughly evaluate their potential benefits for breast cancer patients.
Collapse
Grants
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
Collapse
Affiliation(s)
- Aliasghar Tirgar
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Salmani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Armin Rastegari
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nouzar Nakhaee
- Health Services Management Research Center, Institute of Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
45
|
Guo J, Zhao J, Tian P, Xu Z, Wang R, Chen W, Wang X, Wan S, Yang Y, Zhang H. BaP/BPDE exposure causes human trophoblast cell dysfunctions and induces miscarriage by up-regulating lnc-HZ06-regulated IL1B. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134741. [PMID: 38991640 DOI: 10.1016/j.jhazmat.2024.134741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.
Collapse
Affiliation(s)
- Jiarong Guo
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Chengdu Qingyang District for Disease Control and Prevention, Chengdu 610031, China
| | - Jingsong Zhao
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Tian
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Rong Wang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
46
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
47
|
Wang Y, Li D, Li Q, Basnet A, Efird JT, Seki N. Neutrophil estimation and prognosis analysis based on existing lung squamous cell carcinoma datasets: the development and validation of a prognosis prediction model. Transl Lung Cancer Res 2024; 13:2023-2037. [PMID: 39263021 PMCID: PMC11384491 DOI: 10.21037/tlcr-24-411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Background Notwithstanding the rapid developments in precision medicine in recent years, lung cancer still has a low survival rate, especially lung squamous cell cancer (LUSC). The tumor microenvironment (TME) plays an important role in the progression of lung cancer, in which high neutrophil levels are correlated with poor prognosis, potentially due to their interactions with tumor cells via pro-inflammatory cytokines and chemokines. However, the precise mechanisms of how neutrophils influence lung cancer remain unclear. This study aims to explore these mechanisms and develop a prognosis predictive model in LUSC, addressing the knowledge gap in neutrophil-related cancer pathogenesis. Methods LUSC datasets from the Xena Hub and Gene Expression Omnibus (GEO) databases were used, comprising 473 tumor samples and 195 tumor samples, respectively. Neutrophil contents in these samples were estimated using CIBERSORT, xCell, and microenvironment cell populations (MCP) counter tools. Differentially expressed genes (DEGs) were identified using DEseq2, and a weighted gene co-expression network analysis (WGCNA) was performed to identify neutrophil-related genes. A least absolute shrinkage and selection operator (LASSO) Cox regression model was constructed for prognosis prediction, and the model's accuracy was validated using Kaplan-Meier survival curves and time-dependent receiver operating characteristic (ROC) curves. Additionally, genomic changes, immune correlations, drug sensitivity, and immunotherapy response were analyzed to further validate the model's predictive power. Results Neutrophil content was significantly higher in adjacent normal tissue compared to LUSC tissue (P<0.001). High neutrophil content was associated with worse overall survival (OS) (P=0.02), disease-free survival (DFS) (P=0.02), and progression-free survival (PFS) (P=0.03) using different software estimates. Nine gene modules were identified, with blue and yellow modules showing strong correlations with neutrophil prognosis (P<0.001). Eight genes were selected for the prognostic model, which accurately predicted 1-, 3-, and 5-year survival in both the training set [area under the curve (AUC) value =0.60, 0.63, 0.66, respectively] and validation set (AUC value =0.58, 0.58, 0.59, respectively), with significant prognosis differences between high- and low-risk groups (P<0.001). The model's independent prognostic factors included risk group, pathologic M stage, and tumor stage (P<0.05). A further molecular mechanism analysis revealed differences between risk groups were revealed in immune checkpoint and human leukocyte antigen (HLA) gene expression, hallmark pathways, drug sensitivity, and immunotherapy responses. Conclusions This study established a risk-score model that effectively predicts the prognosis of LUSC patients and sheds light on the molecular mechanisms involved. The findings enhance the understanding of neutrophil-tumor interactions, offering potential targets for personalized treatments. However, further experimental validation and clinical studies are required to confirm these findings and address study limitations, including reliance on public databases and focus on a specific lung cancer subtype.
Collapse
Affiliation(s)
- Youyu Wang
- Department of Thoracic Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Qiang Li
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Alina Basnet
- Division of Hematology-Oncology, Upstate Cancer Center, Upstate Medical University, Syracuse, NY, USA
| | - Jimmy T Efird
- VA Cooperative Studies Program Coordinating Center, Boston, MA, USA
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
49
|
Sun M, Bai J, Wang H, Li M, Zhou L, Li S. Unraveling the relationship between anoikis-related genes and cancer-associated fibroblasts in liver hepatocellular carcinoma. Heliyon 2024; 10:e35306. [PMID: 39165997 PMCID: PMC11334810 DOI: 10.1016/j.heliyon.2024.e35306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
This study intended to determine the molecular subtypes of liver hepatocellular carcinoma (LIHC) on the strength of anoikis-related genes (ARGs) and to assess their prognostic value and prospective relationship with immune cell infiltration and cancer-associated fibroblasts (CAFs). Univariate Cox regression analysis yielded 66 prognosis-related ARGs and classified LIHC into two distinct subtypes, with subtype A demonstrating overexpression of most prognosis-related ARGs and a significant survival disadvantage. Furthermore, a reliable prediction model was developed using ARGs to evaluate the risk of LIHC patients. This model served as an independent prognostic indicator and a quantitative tool for clinical prognostic prediction. Additionally, subtype-specific differences in immune cell infiltration were observed, and the risk score was potentially linked to immune-related characteristics. Moreover, the study identified a significant association between CAF score and LIHC prognosis, with a low CAF score indicating a favorable patient prognosis. In conclusion, this study reveals the molecular mechanisms underlying the development and progression of LIHC and identifies potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiangtao Bai
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Wang
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Mei Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Long Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Shanfeng Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
50
|
Jiang P, Zhu X, Jiang Y, Li H, Luo Q. Targeting JUNB to modulate M2 macrophage polarization in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167194. [PMID: 38663490 DOI: 10.1016/j.bbadis.2024.167194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 06/17/2024]
Abstract
Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.
Collapse
Affiliation(s)
- Peiyue Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Hetong Li
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China.
| |
Collapse
|