1
|
Back F, Barras A, Nyam-Erdene A, Yang JC, Melinte S, Rumipamba J, Burnouf T, Boukherroub R, Szunerits S, Chuang EY. Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care. Adv Healthc Mater 2025; 14:e2401914. [PMID: 39449544 DOI: 10.1002/adhm.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Platelet extracellular vesicles (pEVs) isolated from clinical-grade human platelet concentrates are attracting attention as a promising agent for wound healing therapies. Although pEVs have shown potential for skin regeneration, their incorporation into wound bandages has remained limitedly explored. Herein, gelatine-based hydrogel (PAH-G) foams for pEVs loading and release are formulated by crosslinking gelatine with poly(allylamine) hydrochloride (PAH) in the presence of glutaraldehyde and sodium bicarbonate. The optimized PAH-G hydrogel foam, PAH0.24G37, displayed an elastic modulus G' = 8.5 kPa at 37 °C and retained a rubbery state at elevated temperatures. The excellent swelling properties of PAH0.24G37 allowed to easily absorb pEVs at high concentration (1 × 1011 particles mL-1). The therapeutic effect of pEVs was evaluated in vivo on a chronic wound rat model. These studies demonstrated full wound closure after 14 days upon treatment with PAH0.24G37@pEVs. The maintenance of a reduced-inflammatory environment from the onset of treatment promoted a quicker transition to skin remodeling. Promotion of follicle activation and angiogenesis as well as M1-M2 macrophage modulation are evidenced. Altogether, the multifunctional properties of PAH0.24G37@pEVs addressed the complex challenges associated with chronic diabetic wounds, representing a significant advance toward personalized treatment regimens for these conditions.
Collapse
Affiliation(s)
- Florence Back
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Ariunjargal Nyam-Erdene
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Jen-Chang Yang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Sorin Melinte
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - José Rumipamba
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| |
Collapse
|
2
|
Esmaeili A, Noorkhajavi G, Soleimani M, Farsinezhad H, Bagheri-Mohammadi S, Keshel SH. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024; 91:102611. [PMID: 39550901 DOI: 10.1016/j.tice.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In the medical field, wound healing poses significant challenges due to its complexity and time-consuming nature. Cell-free wound repair, notably the utilization of exosomes (EXOs), has made significant progress in recent years. Urine, saliva, umbilical cord, blood, mesenchymal stem cells and breast milk cells can be used to extract and purify EXOs, which are Nano-sized lipid bilayer vesicles. Besides their relatively little toxicity, non-specific immunogenicity and excellent biocompatibility, EXOs also contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs), and messenger RNAs (mRNAs). Their bioactive compounds have anti-inflammatory properties and can speed up wound healing. Various medicinal agents can also be contained within the EXOs. This review briefly provides new information on the different aspects of EXOs and evaluate the application of EXOs as a promising therapy in the regeneration of skin wounds in recent pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Noorkhajavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farsinezhad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Banerjee A, Singh P, Sheikh PA, Kumar A, Koul V, Bhattacharyya J. A multifunctional silk-hyaluronic acid self-healing hydrogel laden with alternatively activated macrophage-derived exosomes reshape microenvironment of diabetic wound and accelerate healing. Int J Biol Macromol 2024; 270:132384. [PMID: 38754682 DOI: 10.1016/j.ijbiomac.2024.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The impairment of phenotype switching of pro-inflammatory M1 to pro-healing M2 macrophage induced by hyperglycemic microenvironment often elevates oxidative stress, impairs angiogenesis, and leads to chronic non-healing wounds in diabetic patients. Administration of M2 macrophage-derived exosomes (M2Exo) at wound site is known to polarize M1 to M2 macrophage and can accelerate wound healing by enhancing collagen deposition, angiogenesis, and re-epithelialization. In the present study, M2Exo were conjugated with oxidized hyaluronic acid and mixed with PEGylated silk fibroin to develop self-healing Exo-gel to achieve an efficient therapy for diabetic wounds. Exo-gel depicted porous networked morphology with self-healing and excellent water retention behaviour. Fibroblast cells treated with Exo-gel showed significant uptake of M2Exo that increased their proliferation and migration in vitro. Interestingly, in a diabetic wound model of wistar rats, Exo-gel treatment induced 75 % wound closure within 7 days with complete epithelial layer regeneration by modulating cytokine levels, stimulating fibroblast-keratinocyte interaction and migration, angiogenesis, and organized collagen deposition. Taken together, this study suggests that Exo-gel depict properties of an excellent wound healing matrix and can be used as a therapeutic alternative to treat chronic non-healing diabetic wounds.
Collapse
Affiliation(s)
- Ahana Banerjee
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Parvaiz A Sheikh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre of Excellence for Orthopedics and Prosthetics, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India.
| |
Collapse
|
4
|
Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, Calvo J, Gayà A, Monjo M, Ramis JM. Impact of donor pool size on the variability of platelet lysate-derived extracellular vesicles for regenerative medicine. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:259-270. [PMID: 39698534 PMCID: PMC11651878 DOI: 10.20517/evcna.2024.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 12/20/2024]
Abstract
Aim: The objective of the present study was to determine the variability of platelet lysate-derived extracellular vesicles (pEV), in terms of characteristics and functionality through wound healing assays, when isolated either from platelet concentrates (PC, obtained from 5 donors) or from multiple PC (MPC, that is 50 donors). Methods: pEV were isolated under GMP-like conditions in a clean room using Size Exclusion Chromatography (SEC). The differential characteristics between pEV obtained from PC (PC-EV) or MPC (MPC-EV) were evaluated by means of protein concentration, Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), and flow cytometry using the MACSPlex™ arrays for surface analysis profiling of EV. The functionality of the isolated pEV was determined in cell culture by metabolic activity and LDH activity determination and through a wound healing assay after 24 h treatment. Results: No significant differences were observed in the pEV characteristics evaluated, whether isolated from PC or MPC. As regards functionality, a higher wound closure percentage was obtained in those pEV pools isolated from PC (5 donors). No differences in the coefficient of variation (CV) were found when comparing all the evaluated variables of pEV derived either from PC (5 donors) or from MPC (50 donors). Conclusion: Our findings challenge the necessity of a larger donor pool for pEV isolation, revealing no significant variations in the analyzed variables of MPC-EV and PC-EV. Notably, our results suggest that, unlike platelet concentrates, a high number of donors is not required to reduce the variability of pEV, showing that the pool of only 5 donors can provide a consistent and reliable therapeutic product.
Collapse
Affiliation(s)
- Andreu Miquel Amengual-Tugores
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Departament of Fundamental Biology and Health Sciences, UIB, Palma 07122, Spain
| | - Carmen Ráez-Meseguer
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Departament of Fundamental Biology and Health Sciences, UIB, Palma 07122, Spain
| | - Maria Antònia Forteza-Genestra
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
| | - Javier Calvo
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma 07004, Spain
| | - Antoni Gayà
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma 07004, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Departament of Fundamental Biology and Health Sciences, UIB, Palma 07122, Spain
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering (TERCIT), Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma 07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma 07122, Spain
- Departament of Fundamental Biology and Health Sciences, UIB, Palma 07122, Spain
| |
Collapse
|
5
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
6
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Song Y, You Y, Xu X, Lu J, Huang X, Zhang J, Zhu L, Hu J, Wu X, Xu X, Tan W, Du Y. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304023. [PMID: 37712174 PMCID: PMC10602544 DOI: 10.1002/advs.202304023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Wound healing is an urgent clinical challenge, particularly in the case of chronic wounds. Traditional approaches to wound healing have limited therapeutic efficacy due to lengthy healing times, risk of immune rejection, and susceptibility to infection. Recently, adipose-derived mesenchymal stem cell-derived exosomes (ADSC-exos) have emerged as a promising modality for tissue regeneration and wound repair. In this study, the development of a novel extracellular matrix hydrogel@exosomes (ECM@exo) is reported, which entails incorporation of ADSC-exos into an extracellular matrix hydrogel (ECM hydrogel). This solution forms a hydrogel at physiological temperature (≈37 °C) upon local injection into the wound site. ECM@exo enables sustained release of ADSC-exos from the ECM hydrogel, which maintains high local concentrations at the wound site. The ECM hydrogel displays good biocompatibility and biodegradability. The in vivo and in vitro results demonstrate that ECM@exo treatment effectively reduces inflammation and promotes angiogenesis, collagen deposition, cell proliferation, and migration, thereby accelerating the wound healing process. Overall, this innovative therapeutic approach offers a new avenue for wound healing via a biological hydrogel with controlled exosome release.
Collapse
Affiliation(s)
- Yanling Song
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yuchan You
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xinyi Xu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jingyi Lu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiajie Huang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jucong Zhang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Luwen Zhu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jiahao Hu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiaochuan Wu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiaoling Xu
- Shulan International Medical CollegeZhejiang Shuren UniversityHangzhouZhejiang310015P. R. China
| | - Weiqiang Tan
- Department of Plastic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Yongzhong Du
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Department of Plastic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Innovation Center of Translational PharmacyJinhua Institute of Zhejiang UniversityJinhua321299P. R. China
| |
Collapse
|
8
|
Hao PC, Burnouf T, Chiang CW, Jheng PR, Szunerits S, Yang JC, Chuang EY. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnology 2023; 21:318. [PMID: 37667248 PMCID: PMC10478311 DOI: 10.1186/s12951-023-02068-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Impaired wound healing is a significant complication of diabetes. Platelet-derived extracellular vesicles (pEVs), rich in growth factors and cytokines, show promise as a powerful biotherapy to modulate cellular proliferation, angiogenesis, immunomodulation, and inflammation. For practical home-based wound therapy, however, pEVs should be incorporated into wound bandages with careful attention to delivery strategies. In this work, a gelatin-alginate hydrogel (GelAlg) loaded with reduced graphene oxide (rGO) was fabricated, and its potential as a diabetic wound dressing was investigated. The GelAlg@rGO-pEV gel exhibited excellent mechanical stability and biocompatibility in vitro, with promising macrophage polarization and reactive oxygen species (ROS)-scavenging capability. In vitro cell migration experiments were complemented by in vivo investigations using a streptozotocin-induced diabetic rat wound model. When exposed to near-infrared light at 2 W cm- 2, the GelAlg@rGO-pEV hydrogel effectively decreased the expression of inflammatory biomarkers, regulated immune response, promoted angiogenesis, and enhanced diabetic wound healing. Interestingly, the GelAlg@rGO-pEV hydrogel also increased the expression of heat shock proteins involved in cellular protective pathways. These findings suggest that the engineered GelAlg@rGO-pEV hydrogel has the potential to serve as a wound dressing that can modulate immune responses, inflammation, angiogenesis, and follicle regeneration in diabetic wounds, potentially leading to accelerated healing of chronic wounds.
Collapse
Affiliation(s)
- Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F- 59000, France
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110-52, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
9
|
Yang S, Chen S, Zhang C, Han J, Lin C, Zhao X, Guo H, Tan Y. Enhanced therapeutic effects of mesenchymal stem cell-derived extracellular vesicles within chitosan hydrogel in the treatment of diabetic foot ulcers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:43. [PMID: 37639051 PMCID: PMC10462522 DOI: 10.1007/s10856-023-06746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising candidates for cell-free therapy in various diseases, including chronic cutaneous wounds. However, the lack of standardized protocols for EVs' preparation and identification poses a significant challenge to their clinical application. Thus, the objective was to develop a safe and efficient method for the large-scale production of hUCMSC-derived EVs while establishing a comprehensive identification protocol encompassing morphology, particle size distribution, protein expression, and purity. This study observed that most of the EVs acquired through the protocol exhibited either a cup-shaped or round-shaped structure, with a median diameter of ~73.25 nm. The proportions of EVs positive for CD9, CD63, and CD81 were 37.5%, 38.6%, and 19.8%, respectively. To enhance their therapeutic potential in wound treatment, EVs were incorporated into chitosan hydrogel, forming chitosan hydrogel-EVs (CS-EVs). Furthermore, it was demonstrated that CS-EVs exhibited continuous release of EVs into the surrounding environment and, importantly, that the released EVs were internalized by human umbilical vein endothelial cells (HUVECs), resulting in significant enhancement of cell migration and angiogenesis. Additionally, in a rat model of diabetic foot ulcers, CS-EVs demonstrated a robust therapeutic effect in promoting wound healing. Following a 15-day treatment period, the group treated with CS-EVs demonstrated an impressive 93.3% wound closure ability, accompanied by a high degree of re-epithelialization. In contrast, the control group exhibited only a 71.5% reduction in wound size. In summary, this study offers solutions for the purification, characterization, and application of EVs in clinical wound treatment. These results not only offer fresh perspectives on the involvement of hUCMSC-derived EVs in wound healing but also introduce a non-invasive approach for applying EVs that holds practical significance in skin repair.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Siyu Chen
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Chengpeng Zhang
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Jing Han
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Chunyuan Lin
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Xiaohui Zhao
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Huizhen Guo
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, No.1758 Gangyuan Six Road, Ji'nan, Shandong, China.
| |
Collapse
|
10
|
Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int J Biol Macromol 2023:125454. [PMID: 37331533 DOI: 10.1016/j.ijbiomac.2023.125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Antibacterial hydrogels are a type of hydrogel that is designed to inhibit the growth of bacteria and prevent infections. These hydrogels typically contain antibacterial agents that are either integrated into the polymer network or coated onto the surface of the hydrogel. The antibacterial agents in these hydrogels can work through a variety of mechanisms, such as disrupting bacterial cell walls or inhibiting bacterial enzyme activity. Some examples of antibacterial agents that are commonly used in hydrogels include silver nanoparticles, chitosan, and quaternary ammonium compounds. Antibacterial hydrogels have a wide range of applications, including wound dressings, catheters, and medical implants. They can help to prevent infections, reduce inflammation, and promote tissue healing. In addition, they can be designed with specific properties to suit different applications, such as high mechanical strength or controlled release of antibacterial agents over time. Hydrogel wound dressings have come a long way in recent years, and the future looks very promising for these innovative wound care products. Overall, the future of hydrogel wound dressings is very promising, and we can expect to see continued innovation and advancement in this field in the years to come.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Huang X, Li Y, Liao H, Luo X, Zhao Y, Huang Y, Zhou Z, Xiang Q. Research Advances on Stem Cell-Derived Extracellular Vesicles Promoting the Reconstruction of Alveolar Bone through RANKL/RANK/OPG Pathway. J Funct Biomater 2023; 14:jfb14040193. [PMID: 37103283 PMCID: PMC10145790 DOI: 10.3390/jfb14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Periodontal bone tissue defects and bone shortages are the most familiar and troublesome clinical problems in the oral cavity. Stem cell-derived extracellular vesicles (SC-EVs) have biological properties similar to their sources, and they could be a promising acellular therapy to assist with periodontal osteogenesis. In the course of alveolar bone remodeling, the RANKL/RANK/OPG signaling pathway is an important pathway involved in bone metabolism. This article summarizes the experimental studies of SC-EVs applied for the therapy of periodontal osteogenesis recently and explores the role of the RANKL/RANK/OPG pathway in their mechanism of action. Their unique patterns will open a new field of vision for people, and they will help to advance a possible future clinical treatment.
Collapse
Affiliation(s)
- Xia Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yuxiao Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Hui Liao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Xin Luo
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiying Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|