1
|
Ye Z, van der Wildt B, Nurmohamed FRHA, van Duyvenbode JFFH, van Strijp J, Vogely HC, Lam MGEH, Dadachova E, Weinans H, van der Wal BCH, Poot AJ. Radioimmunotherapy combating biofilm-associated infection in vitro. Front Med (Lausanne) 2024; 11:1478636. [PMID: 39678029 PMCID: PMC11637858 DOI: 10.3389/fmed.2024.1478636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Addressing prosthetic joint infections poses a significant challenge within orthopedic surgery, marked by elevated morbidity and mortality rates. The presence of biofilms and infections attributed to Staphylococcus aureus (S. aureus) further complicates the scenario. Objective To investigate the potential of radioimmunotherapy as an innovative intervention to tackle biofilm-associated infections. Methods Our methodology involved employing specific monoclonal antibodies 4497-IgG1, designed for targeting wall teichoic acids found on S. aureus and its biofilm. These antibodies were linked with radionuclides actinium-225 (225Ac) and lutetium-177 (177Lu) using DOTA as a chelator. Following this, we evaluated the susceptibility of S. aureus and its biofilm to radioimmunotherapy in vitro, assessing bacterial viability and metabolic activity via colony-forming unit enumeration and xylenol tetrazolium assays. Results Both [225Ac]4497-IgG1 and [177Lu]4497-IgG1 exhibited a noteworthy dose-dependent reduction in S. aureus in planktonic cultures and biofilms over a 96-h exposure period, compared to non-specific antibody control groups. Specifically, doses of 7.4 kBq and 7.4 MBq of [225Ac]4497-IgG1 and [177Lu]4497-IgG1 resulted in a four-log reduction in planktonic bacterial counts. Within biofilms, 14.8 kBq of [225Ac]4497-IgG1 and 14.8 Mbq [177Lu]4497-IgG1 led to reductions of two and four logs, respectively. Conclusion Our findings underscore the effectiveness of [225Ac]4497-IgG1 and [177Lu]4497-IgG1 antibodies in exerting dose-dependent bactericidal effects against planktonic S. aureus and biofilms in vitro. This suggests that radioimmunotherapy might serve as a promising targeted treatment approach for combating S. aureus and its biofilm.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Berend van der Wildt
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - H. Charles Vogely
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | | | - Alex J. Poot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
2
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Alanizi AA, Sorlin AM, Parker MFL, López-Álvarez M, Qin H, Lee SH, Blecha J, Rosenberg OS, Engel J, Ohliger MA, Flavell RR, Wilson DM. Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [ 18F]FB-sulfo-DBCO. Bioconjug Chem 2024; 35:517-527. [PMID: 38482815 PMCID: PMC11036355 DOI: 10.1021/acs.bioconjchem.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.
Collapse
Affiliation(s)
- Aryn A. Alanizi
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Alexandre M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Matthew F. L. Parker
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony
Brook, New York 11794, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Hecong Qin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
van Dijk B, Oliveira S, Hooning van Duyvenbode JFF, Nurmohamed FRHA, Mashayekhi V, Hernández IB, van Strijp J, de Vor L, Aerts PC, Vogely HC, Weinans H, van der Wal BCH. Photoimmuno-antimicrobial therapy for Staphylococcus aureus implant infection. PLoS One 2024; 19:e0300069. [PMID: 38457402 PMCID: PMC10923484 DOI: 10.1371/journal.pone.0300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Implant infections caused by Staphylococcus aureus are responsible for high mortality and morbidity worldwide. Treatment of these infections can be difficult especially when bacterial biofilms are involved. In this study we investigate the potential of infrared photoimmunotherapy to eradicate staphylococcal infection in a mouse model. METHODS A monoclonal antibody that targets Wall Teichoic Acid surface components of both S. aureus and its biofilm (4497-IgG1) was conjugated to a photosensitizer (IRDye700DX) and used as photoimmunotherapy in vitro and in vivo in mice with a subcutaneous implant pre-colonized with biofilm of Staphylococcus aureus. A dose of 400 μg and 200 μg of antibody-photosensitizer conjugate 4497-IgG-IRDye700DXwas administered intravenously to two groups of 5 mice. In addition, multiple control groups (vancomycin treated, unconjugated IRDye700DX and IRDye700DX conjugated to a non-specific antibody) were used to verify anti-microbial effects. RESULTS In vitro results of 4497-IgG-IRDye700DX on pre-colonized (biofilm) implants showed significant (p<0.01) colony-forming units (CFU) reduction at a concentration of 5 μg of the antibody-photosensitizer conjugate. In vivo, treatment with 4497-IgG-IRDye700DX showed no significant CFU reduction at the implant infection. However, tissue around the implant did show a significant CFU reduction with 400 μg 4497-IgG-IRDye700DX compared to control groups (p = 0.037). CONCLUSION This study demonstrated the antimicrobial potential of photoimmunotherapy for selectively eliminating S. aureus in vivo. However, using a solid implant instead of a catheter could result in an increased bactericidal effect of 4497-IgG-IRDye700DX and administration locally around an implant (per operative) could become valuable applications in patients that are difficult to treat with conventional methods. We conclude that photoimmunotherapy could be a potential additional therapy in the treatment of implant related infections, but requires further improvement.
Collapse
Affiliation(s)
- Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | - Vida Mashayekhi
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Irati Beltrán Hernández
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H. Charles Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
5
|
van der Wal BCH, Dadachova E. Targeted Radionuclide Therapy of Cancer and Infections. Int J Mol Sci 2023; 24:ijms24109081. [PMID: 37240433 DOI: 10.3390/ijms24109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Targeted radionuclide therapy (TRT) has been burgeoning worldwide, with several radiopharmaceuticals for the treatment of metastatic cancers being approved for clinical use [...].
Collapse
Affiliation(s)
- Bart C H van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|