1
|
Liu L, Yu K, Yu J, Tao W, Wei Y. MiR-133 promotes the multidrug resistance of acute myeloid leukemia cells (HL-60/ADR) to daunorubicin. Cytotechnology 2024; 76:833-846. [PMID: 39435426 PMCID: PMC11490624 DOI: 10.1007/s10616-024-00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to explore the role and molecular mechanism of miR-133 in multidrug resistance in acute myeloid leukemia (AML) and provide a new theoretical basis for the treatment and prognosis of AML patients. We performed experiments at the cellular level. RT‒qPCR and Western blotting were used to detect gene and protein expression; cell viability was measured with CCK-8 assays; apoptosis was detected via flow cytometry; and a dual-luciferase reporter gene assay was used to verify the binding between miR-133 and CXCL12. In this study, we found that miR-133 was upregulated in HL-60/ADR multidrug-resistant cells. Functionally, the inhibition of miR-133 alleviated the resistance of HL-60/ADR cells to daunorubicin (DNR). After inhibiting miR-133 in HL-60/ADR cells treated with DNR, the expression of the intracellular drug resistance-related proteins MRP562 and P-gp was inhibited, cell proliferation decreased, and apoptosis increased. Mechanistically, the NF-κB signaling pathway regulates the expression of miR-133 in HL-60/ADR cells, and the targeting of CXCL12 by miR-133 enhances the resistance of HL-60/ADR cells to DNR. In conclusion, the NF-κB signaling pathway regulates the expression of miR-133, and inhibiting miR-133 expression can target CXCL12 to increase the sensitivity of HL-60/ADR cells to DNR.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Kun Yu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Wei Tao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Yueping Wei
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| |
Collapse
|
2
|
Potsenkovskaia EA, Tvorogova VE, Simonova VY, Konstantinov ZS, Kiseleva AS, Matveenko AG, Brynchikova AV, Lutova LA. CRISPR-Based Editing of the Medicago truncatula LEC1 Gene. PLANTS (BASEL, SWITZERLAND) 2024; 13:3226. [PMID: 39599434 PMCID: PMC11598548 DOI: 10.3390/plants13223226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Arabidopsis thaliana LEAFY COTYLEDON1 (LEC1) gene is shown to have numerous diverse functions in plant development, including the regulation of embryo morphogenesis and maturation, hypocotyl elongation, flowering transition, etc. However, the functions of LEC1 orthologs in different plant species have not been extensively studied. In this study, we obtained a line of Medicago truncatula, a model leguminous plant, carrying the loss-of-function mutation in the MtLEC1 (MtNF-YB10) gene, orthologous to LEC1, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas9) genome editing system. Edited plants with loss of MtNF-YB10 function did not demonstrate any severe abnormalities during their normal growth and gave viable seeds, but their capability for somatic embryogenesis in vitro was dramatically reduced. The T1 progeny of unedited plants with a Cas9-gRNA cassette insertion was also analyzed based on the suggestion that editing could occur during seed formation. However, no edited plants were found in the T1 generation. These results suggest divergent functions of LEC1 orthologs and make it possible to investigate potential specific MtNF-YB10 functions.
Collapse
Affiliation(s)
- Elina A. Potsenkovskaia
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 Saint Petersburg, Russia
| | - Varvara E. Tvorogova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 Saint Petersburg, Russia
| | - Veronika Y. Simonova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Zakhar S. Konstantinov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Anna S. Kiseleva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Anna V. Brynchikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| |
Collapse
|
3
|
Yang Y, Wheatley M, Meakem V, Galarneau E, Gutierrez B, Zhong G. Editing VvDXS1 for the creation of muscat flavour in Vitis vinifera cv. Scarlet Royal. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1610-1621. [PMID: 38243882 PMCID: PMC11123410 DOI: 10.1111/pbi.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Muscat flavour represents a group of unique aromatic attributes in some grape varieties. Biochemically, grape berries with muscat flavour produce high levels of monoterpenes. Monoterpene biosynthesis is mainly through the DOXP/MEP pathway, and VvDXS1 encodes the first enzyme in this plastidial pathway of terpene biosynthesis in grapevine. A single-point mutation resulting in the substitution of a lysine with an asparagine at position 284 in the VvDXS1 protein has previously been identified as the major cause for producing muscat flavour in grapes. In this study, the same substitution in the VvDXS1 protein was successfully created through prime editing in the table grape Vitis vinifera cv. 'Scarlet Royal'. The targeted point mutation was detected in most of the transgenic vines, with varying editing efficiencies. No unintended mutations were detected in the edited alleles, either by PCR Sanger sequencing or by amplicon sequencing. More than a dozen edited vines were identified with an editing efficiency of more than 50%, indicating that these vines were likely derived from single cells in which one allele was edited. These vines had much higher levels of monoterpenes in their leaves than the control, similar to what was found in leaf samples between field-grown muscat and non-muscat grapes.
Collapse
Affiliation(s)
- Yingzhen Yang
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| | - Matthew Wheatley
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| | - Victoria Meakem
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Erin Galarneau
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Benjamin Gutierrez
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Gan‐Yuan Zhong
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| |
Collapse
|
4
|
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. PLANT PHYSIOLOGY 2024; 194:2022-2038. [PMID: 38290051 PMCID: PMC10980418 DOI: 10.1093/plphys/kiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Zhou Q, Feng D, Ma D. ELFN1-AS1 promotes GDF15-mediated immune escape of colorectal cancer from NK cells by facilitating GCN5 and SND1 association. Discov Oncol 2023; 14:56. [PMID: 37147528 PMCID: PMC10163203 DOI: 10.1007/s12672-023-00675-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The ability of colorectal cancer (CRC) cells to escape from natural killer (NK) cell immune surveillance leads to anti-tumor treatment failure. The long non-coding RNA (lncRNA) ELFN1-AS1 is aberrantly expressed in multiple tumors suggesting a role as an oncogene in cancer development. However, whether ELFN1-AS1 regulates immune surveillance in CRC is unclear. Here, we determined that ELFN1-AS1 enhanced the ability of CRC cells to escape from NK cell surveillance in vitro and in vivo. In addition, we confirmed that ELFN1-AS1 in CRC cells attenuated the activity of NK cell by down-regulating NKG2D and GZMB via the GDF15/JNK pathway. Furthermore, mechanistic investigations demonstrated that ELFN1-AS1 enhanced the interaction between the GCN5 and SND1 protein and this influenced H3k9ac enrichment at the GDF15 promotor to stimulate GDF15 production in CRC cells. Taken together, our findings indicate that ELFN1-AS1 in CRC cells suppresses NK cell cytotoxicity and ELFN1-AS1 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qilin Zhou
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|