1
|
Moyano P, Guzmán G, Flores A, García J, Guerra-Menéndez L, Sanjuan J, Plaza JC, Abascal L, Mateo O, Del Pino J. Thyroid Hormone Neuroprotection Against Perfluorooctane Sulfonic Acid Cholinergic and Glutamatergic Disruption and Neurodegeneration Induction. Biomedicines 2024; 12:2441. [PMID: 39595009 PMCID: PMC11591898 DOI: 10.3390/biomedicines12112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Perfluorooctane sulfonic acid (PFOS), a widely used industrial chemical, was reported to induce memory and learning process dysfunction. Some studies tried to reveal the mechanisms that mediate these effects, but how they are produced is still unknown. Basal forebrain cholinergic neurons (BFCN) maintain cognitive function and their selective neurodegeneration induces cognitive decline, as observed in Alzheimer's disease. PFOS was reported to disrupt cholinergic and glutamatergic transmissions and thyroid hormone action, which regulate cognitive processes and maintain BFCN viability. Objective/Methods: To evaluate PFOS neurodegenerative effects on BFCN and the mechanisms that mediate them, SN56 cells (a neuroblastoma cholinergic cell line from the basal forebrain) were treated with PFOS (0.1 µM to 40 µM) with or without thyroxine (T3; 15 nM), MK-801 (20 µM) or acetylcholine (ACh; 10 µM). Results: In the present study, we found that PFOS treatment (1 or 14 days) decreased thyroid receptor α (TRα) activity by decreasing its protein levels and increased T3 metabolism through increased deiodinase 3 (D3) levels. Further, we observed that PFOS treatment disrupted cholinergic transmission by decreasing ACh content through decreased choline acetyltransferase (ChAT) activity and protein levels and through decreasing muscarinic receptor 1 (M1R) binding and protein levels. PFOS also disrupted glutamatergic transmission by decreasing glutamate content through increased glutaminase activity and protein levels and through decreasing N-methyl-D-aspartate receptor subunit 1 (NMDAR1); effects mediated through M1R disruption. All these effects were mediated through decreased T3 activity and T3 supplementation partially restored to the normal state. Conclusions: These findings may assist in understanding how PFOS induces neurodegeneration, and the mechanisms involved, especially in BFCN, to explain the process that could lead to cognitive dysfunction and provide new therapeutic tools to treat and prevent its neurotoxic effects.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gabriela Guzmán
- Departamento de Ciencias Meìdicas Baìsicas, Facultad de Medicina, Universidad San Pablo-CEU, Urbanizacioìn Montepriìncipe, 28660 Boadilla del Monte, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Ciencias Meìdicas Baìsicas, Facultad de Medicina, Universidad San Pablo-CEU, Urbanizacioìn Montepriìncipe, 28660 Boadilla del Monte, Spain
| | - Javier Sanjuan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Olga Mateo
- Department of Surgery, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Wang Y, Song Y, Zhang L, Huang X. The paradoxical role of zinc on microglia. J Trace Elem Med Biol 2024; 83:127380. [PMID: 38171037 DOI: 10.1016/j.jtemb.2023.127380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Zinc is an essential trace element for humans, and its homeostasis is essential for the health of the central nervous system. Microglia, the resident immune cells in the central nervous system, play the roles of sustaining, nourishing, and immune surveillance. Microglia are sensitive to microenvironment changes and are easily activated to M1 phenotype to enhance disease progression or the M2 phenotype to improve peripheral nerves injury repair. Zinc is requisite for microglial activation, However, the cytotoxicity outcome of zinc against microglia, the activated microglia phenotype, and activated microglia function are ambiguous. Herein, we have reviewed the neurological function of zinc and microglia, particularly the ambiguous role of zinc on microglia. We also pay attention to the role of zinc homeostasis on microglial function within the central nervous system disease. Finally, we observe the relationship between zinc and microglia, attempting to design new therapeutic measures against major nervous system disorders.
Collapse
Affiliation(s)
- Yehong Wang
- Graduate Faculty, Xi'an Physical Education University, Xi'an 710068, PR China; Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China.
| | - Lingdang Zhang
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
3
|
Flores A, Moyano P, Sola E, García JM, García J, Frejo MT, Guerra-Menéndez L, Labajo E, Lobo I, Abascal L, Pino JD. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. BIOLOGY 2023; 12:782. [PMID: 37372067 DOI: 10.3390/biology12060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/β-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.
Collapse
Affiliation(s)
- Andrea Flores
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emma Sola
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jimena García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Fisiología, Facultad de Medicina, Universidad San Pablo CEU, 28003 Madrid, Spain
| | - Elena Labajo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inés Lobo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|