1
|
Lopez-Moreno A, Cerk K, Rodrigo L, Suarez A, Aguilera M, Ruiz-Rodriguez A. Bisphenol A exposure affects specific gut taxa and drives microbiota dynamics in childhood obesity. mSystems 2024; 9:e0095723. [PMID: 38426791 PMCID: PMC10949422 DOI: 10.1128/msystems.00957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.
Collapse
Affiliation(s)
- Ana Lopez-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Klara Cerk
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Lourdes Rodrigo
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
| | - Antonio Suarez
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Alicia Ruiz-Rodriguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
3
|
López‐Moreno A, Langella P, Martín R, Aguilera M. Microbiota analysis for risk assessment of xenobiotic exposure and the impact on dysbiosis: identifying potential next-generation probiotics. EFSA J 2023; 21:e211010. [PMID: 38047127 PMCID: PMC10687753 DOI: 10.2903/j.efsa.2023.e211010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
On-going projects of the team are currently dealing with microbiota, xenobiotics, endocrine-disrupting chemicals (EDCs), obesity, inflammation and probiotics. The combination of diet, lifestyle and the exposure to dietary xenobiotics categorised into microbiota-disrupting chemicals (MDCs) could determine obesogenic-related dysbiosis. This modification of the microbiota diversity impacts on individual health-disease balance, inducing altered phenotypes. Specific, complementary, and combined prevention and treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, EU-FORA project contributes to present a perspective through compiling information and key strategies for directed taxa searching and culturing of NGP that could be administered for preventing obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analysing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) design and applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to xenobiotic obesogens' neutralisation effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps and proposals of solutions were also considered in this workplan.
Collapse
Affiliation(s)
- Ana López‐Moreno
- Microbiology Department, Faculty of PharmacyUniversity of GranadaSpain
- "José Mataix Verdú" Institute of Nutrition and Food Technology, University of Granada (INYTA‐UGR)GranadaSpain
| | - Philippe Langella
- Commensal and Probiotics‐Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris‐Saclay78350Jouy‐en‐JosasFrance
| | - Rebeca Martín
- Commensal and Probiotics‐Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris‐Saclay78350Jouy‐en‐JosasFrance
| | - Margarita Aguilera
- Microbiology Department, Faculty of PharmacyUniversity of GranadaSpain
- "José Mataix Verdú" Institute of Nutrition and Food Technology, University of Granada (INYTA‐UGR)GranadaSpain
| |
Collapse
|
4
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
6
|
Van Pamel E, Ruiz-Rodríguez A, Rivas A, Aguilera M. Editorial: Risk of dietary hazardous substances and impact on human microbiota: possible role in several dysbiosis phenotypes, volume II. Front Microbiol 2023; 14:1221169. [PMID: 37383633 PMCID: PMC10294706 DOI: 10.3389/fmicb.2023.1221169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ghent, Belgium
| | - Alicia Ruiz-Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
| | - Ana Rivas
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Institut de Investigación Biosanitaria Ibs, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Institut de Investigación Biosanitaria Ibs, Granada, Spain
| |
Collapse
|