1
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Dzięcioł M, Wala K, Wróblewska A, Janda-Milczarek K. The Effect of the Extraction Conditions on the Antioxidant Activity and Bioactive Compounds Content in Ethanolic Extracts of Scutellaria baicalensis Root. Molecules 2024; 29:4153. [PMID: 39275001 PMCID: PMC11397618 DOI: 10.3390/molecules29174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Ethanolic extracts of Baikal skullcap (Scutellaria baicalensis) root were obtained using various techniques, such as maceration, maceration with shaking, ultrasound-assisted extraction, reflux extraction, and Soxhlet extraction. The influence of the type and time of isolation technique on the extraction process was studied, and the quality of the obtained extracts was determined by spectrophotometric and chromatographic methods to find the optimal extraction conditions. Radical scavenging activity of the extracts was analyzed using DPPH assay, while total phenolic content (TPC) was analyzed by the method with the Folin-Ciocalteu reagent. Application of gas chromatography with mass selective detector (GC-MS) enabled the identification of some bioactive substances and a comparison of the composition of the particular extracts. The Baikal skullcap root extracts characterized by both the highest antioxidant activity and content of phenolic compounds were obtained in 2 h of reflux and Soxhlet extraction. The main biologically active compounds identified in extracts by the GC-MS method were wogonin and oroxylin A, known for their broad spectrum of biological effects, including antioxidant, anti-inflammatory, antiviral, anticancer, and others.
Collapse
Affiliation(s)
- Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Klaudia Wala
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland
| |
Collapse
|
3
|
Moulick S, Roy DN. Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in Staphylococcus aureus. Microb Drug Resist 2024; 30:363-371. [PMID: 39133125 DOI: 10.1089/mdr.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
The rise in antibiotic resistance among bacterial pathogens, particularly Staphylococcus aureus, has become a critical global health issue, necessitating the search for novel antimicrobial agents. S. aureus uses various mechanisms to resist antibiotics, including the activation of efflux pumps, biofilm formation, and enzymatic modification of drugs. This study explores the potential of baicalein, a bioflavonoid from Scutellaria baicalensis, in modulating tetracycline resistance in S. aureus by inhibiting efflux pumps. The synergistic action of baicalein and tetracycline was evaluated through various assays. The minimum inhibitory concentration (MIC) of baicalein and tetracycline against S. aureus was 256 and 1.0 μg/mL, respectively. Baicalein at 64 μg/mL reduced the MIC of tetracycline by eightfold, indicating a synergistic effect (fractional inhibitory concentration index: 0.375). Time-kill kinetics demonstrated a 1.0 log CFU/mL reduction in bacterial count after 24 hours with the combination treatment. The ethidium bromide accumulation assay showed that baicalein mediated significant inhibition of efflux pumps, with a dose-dependent increase in fluorescence. In addition, baicalein inhibited DNA synthesis by 73% alone and 92% in combination with tetracycline. It also markedly reduced biofilm formation and the invasiveness of S. aureus into HeLa cells by 52% at 64 μg/mL. These findings suggest that baicalein enhances tetracycline efficacy and could be a promising adjunct therapy to combat multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Soumitra Moulick
- TCG Lifesciences Private Limited, Kolkata, India
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
6
|
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer's diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31:103998. [PMID: 38681227 PMCID: PMC11053229 DOI: 10.1016/j.sjbs.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) continues to be a worldwide health concern, demanding innovative therapeutic approaches. This study investigates the neuroprotective potential of herbal compounds by scrutinizing their interactions with Beta-Secretase-1 (BACE1). Through comprehensive molecular docking analyses, three compounds, Masticadienonic acid (ΔG: -9.6 kcal/mol), Hederagenin (ΔG: -9.3 kcal/mol), and Anthocyanins (ΔG: -8.1 kcal/mol), emerge as promising BACE1 ligands, displaying low binding energies and strong affinities. ADME parameter predictions, drug-likeness assessments, and toxicity analyses reveal favorable pharmacokinetic profiles for these compounds. Notably, Masticadienonic Acid exhibits optimal drug-likeness (-3.3736) and negligible toxicity concerns. Hederagenin (drug-likeness: -5.3272) and Anthocyanins (drug-likeness: -6.2041) also demonstrate promising safety profiles. Furthermore, pharmacophore modeling elucidates the compounds' unique interaction landscapes within BACE1's active site. Masticadienonic acid showcases seven hydrophobic interactions and a hydrogen bond acceptor interaction with Thr232. Hederagenin exhibits a specific hydrogen bond acceptor interaction with Trp76, emphasizing its selective binding. Anthocyanins reveal a multifaceted engagement, combining hydrophobic contacts and hydrogen bond interactions with key residues. In conclusion, Masticadienonic acid, Hederagenin, and Anthocyanins stand out as promising candidates for further experimental validation, presenting a synergistic balance of efficacy and safety in combating AD through BACE1 inhibition.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
7
|
Li YY, Peng YQ, Yang YX, Shi TJ, Liu RX, Luan YY, Yin CH. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155423. [PMID: 38518646 DOI: 10.1016/j.phymed.2024.155423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yi-Qiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yu-Xi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ting-Juan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Rui-Xia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ying-Yi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| | - Cheng-Hong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| |
Collapse
|
8
|
Jo HG, Baek CY, Song HS, Lee D. Network Pharmacology and Experimental Verifications to Discover Scutellaria baicalensis Georgi's Effects on Joint Inflammation, Destruction, and Pain in Osteoarthritis. Int J Mol Sci 2024; 25:2127. [PMID: 38396803 PMCID: PMC10889325 DOI: 10.3390/ijms25042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae-Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| |
Collapse
|
9
|
Bailly C. Efficacy and safety of the traditional herbal medication Chai-Ling-Tang (in China), Siryung-tang (in Republic of Korea) or Sairei-To (in Japan). JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117127. [PMID: 37683930 DOI: 10.1016/j.jep.2023.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal medicine designated Chai-Ling-Tang in China, Siryung-tang in South Korea, and Sairei-To (or Tsumura Saireito extract granules, TJ-114) in Japan is a complex polyherbal formulations with 12 plant components. It is used historically to treat Shaoyang syndrome, recorded in an ancient Chinese medical text "Treatise on Cold Damage Disorder" (Shanghan Lun). Chai-Ling-Tang formula combines two traditional Chinese herbal medicine prescriptions: Xiao-Chai-Hu-Tang and Wu-Ling-San (known as Sho-Saiko-To and Goreisan in Japan, and So Shi Ho Tang and Oreonsang in Korea, respectively). These traditional Chinese/Korean medicines and Kampo medicine have been used for more than 2000 years in East Asia, notably as regulators of body fluid homeostasis. AIM OF THE STUDY This study aims to evaluate clinical uses, pharmacological effects and unwanted effects of Sairei-To through a narrative literature survey. The main active phytoconstituents and their mechanism of actions are also collated based on the literature. METHODS Several databases including SciFinder and PubMed were searched in sourcing information using keywords corresponding to the medicinal treatment names and the corresponding plants and phytochemicals. Relevant textbooks, reviews, and digital documents (mostly in English) were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Sairei-To derives from ten plants and two fungi. The three major components are Bupleuri radix (Saiko), Pinelliae rhizoma (Hange), and Alismatis rhizoma (Takusha). The rest includes the species Scutellariae radix, Zizyphi fructus, Ginseng radix, Glycyrrhizae radix, Zingiberis rhizoma, Cinnamomi cortex, Atractylodis lanceae rhizoma, Poria sclerotium, and Polyporus sclerotium. The therapeutic uses of Sairei-To are very diversified, ranging from the treatment of autoimmune diseases, intestinal inflammatory disorders, edema, intestinal and kidney diseases, cancers, inflammatory skin pathologies, and other conditions such as reproductive failure. Sairei-To is considered as a safe and efficient medication, with potential rare unwanted side effects, notably lung injuries (pneumonitis essentially). Marked anti-inflammatory and immune-modulatory effects of Sairei-To have been reported, generally associated to the action of saponins (saikosaponins, glycyrrhizin), terpenoids (alisols) and flavonoids (baicalin, oroxylin A). CONCLUSION Sairei-To is commonly used to treat inflammatory diseases and appears efficient to decrease the side effects of corticosteroids. Its immune-regulatory action is well recognized and exploited to treat certain skin lesions and chemotherapy-related toxic effects. The activity of the Sairei-To product relies on the synergistic action of its individual ingredients. Further studies are warranted to quantify the synergy of action inherent to this interesting botanical medication.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille, Wasquehal, 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000, Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
10
|
Li X, Deng Q, Kuang Y, Mao H, Yao M, Lin C, Luo X, Xu P. Identifying NFKB1, STAT3, and CDKN1A as Baicalein's Potential Hub Targets in Parkinson's Disease-related α-synuclein-mediated Pathways by Integrated Bioinformatics Strategies. Curr Pharm Des 2023; 29:2426-2437. [PMID: 37859325 DOI: 10.2174/0113816128259065231011114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyin Deng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changsong Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|