1
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
2
|
Alati C, Pitea M, Mico MC, Marafioti V, Greve B, Pratico G, Loteta B, Cogliandro F, Porto G, Policastro G, Utano G, Sgarlata A, Imbalzano L, Delfino IM, Montechiarello E, Germano J, Filippelli G, Martino M. Optimizing maintenance therapy in acute myeloid leukemia: where do we stand in the year 2024? Expert Rev Hematol 2024; 17:515-525. [PMID: 39017205 DOI: 10.1080/17474086.2024.2382300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Despite the prognosis of patients affected by acute myeloid leukemia (AML) improved in the last decade, most patients relapse. Maintenance therapy after a chemotherapy approach with or without allogeneic stem cell transplantation could be a way to control the undetectable residual burden of leukemic cells. Several studies are being carried out as maintenance therapy in AML. Some critical points need to be defined, how the physician can choose among the various drugs available. AREAS COVERED This review discusses the advances and controversies surrounding maintenance therapy for AML patients. EXPERT OPINION Patients withFLT3-positive AML should receive midostaurin or quizartinib in the first-linesetting. For a patient initially receiving midostaurin, consider switching to sorafenib in the post-transplant setting. Because of the improved safety profile and potency, many experts will lean toward using a second-generation FLT3 inhibitor such as quizartinib or gilteritinib. Finally, no data indicate whether maintenance therapy should be prolonged until progression or for a defined period.
Collapse
Affiliation(s)
- Caterina Alati
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Martina Pitea
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Maria Caterina Mico
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Violetta Marafioti
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Bruna Greve
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Giulia Pratico
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Barbara Loteta
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Francesca Cogliandro
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Gaetana Porto
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Giorgia Policastro
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Giovanna Utano
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Annalisa Sgarlata
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Lucrezia Imbalzano
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Ilaria Maria Delfino
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Elisa Montechiarello
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | - Jessyca Germano
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| | | | - Massimo Martino
- Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Reggio Calabria, Italy
- Stem Cell Transplant Program CIC587, Reggio Calabria, Italy
| |
Collapse
|
3
|
Tiong IS, Hiwase DK, Abro E, Bajel A, Palfreyman E, Beligaswatte A, Reynolds J, Anstee N, Nguyen T, Loo S, Chua CC, Ashby M, Wiltshire KM, Fleming S, Fong CY, Teh TC, Blombery P, Dillon R, Ivey A, Wei AH. Targeting Molecular Measurable Residual Disease and Low-Blast Relapse in AML With Venetoclax and Low-Dose Cytarabine: A Prospective Phase II Study (VALDAC). J Clin Oncol 2024; 42:2161-2173. [PMID: 38427924 PMCID: PMC11191043 DOI: 10.1200/jco.23.01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
PURPOSE A prospective phase II study examined the safety and efficacy of venetoclax combined with low-dose cytarabine (LDAC) in AML at first measurable residual disease (MRD) or oligoblastic relapse. METHODS Patients with either MRD (≥1 log10 rise) or oligoblastic relapse (blasts 5%-15%) received venetoclax 600 mg once daily D1-28 plus LDAC once daily D1-10 in 28-day cycles. The primary objective was MRD response in the MRD relapse cohort or complete remission (CR/CRh/CRi) in the oligoblastic relapse cohort. RESULTS Forty-eight adults with either MRD (n = 26) or oligoblastic (n = 22) relapse were enrolled. Median age was 67 years (range, 18-80) and 94% had received previous intensive chemotherapy. Patients received a median of four cycles of therapy; 17% completed ≥12 cycles. Patients with oligoblastic relapse had more grade ≥3 anemia (32% v 4%; P = .02) and infections (36% v 8%; P = .03), whereas grade 4 neutropenia (32 v 23%) or thrombocytopenia (27 v 15%) were comparable with the MRD relapse cohort. Markers of molecular MRD relapse included mutant NPM1 (77%), CBFB::MYH11 (4%), RUNX1::RUNX1T1 (4%), or KMT2A::MLLT3 (4%). Three patients with a log10 rise in IDH1/2 (12%) were included. By cycle 2 in the MRD relapse cohort, a log10 reduction in MRD was observed in 69%; 46% achieved MRD negative remission. In the oligoblastic relapse cohort, 73% achieved CR/CRh/CRi. Overall, 21 (44%) underwent hematopoietic cell transplantation. Median overall survival (OS) was not reached in either cohort. Estimated 2-year OS rate was 67% (95% CI, 50 to 89) in the MRD and 53% (95% CI, 34 to 84) in the oligoblastic relapse cohorts. CONCLUSION For AML in first remission and either MRD or oligoblastic relapse, venetoclax plus LDAC is well tolerated and highly effective.
Collapse
MESH Headings
- Humans
- Aged
- Middle Aged
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Neoplasm, Residual
- Cytarabine/administration & dosage
- Sulfonamides/administration & dosage
- Sulfonamides/adverse effects
- Adult
- Female
- Male
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Aged, 80 and over
- Prospective Studies
- Nucleophosmin
- Young Adult
- Adolescent
Collapse
Affiliation(s)
- Ing Soo Tiong
- The Alfred Hospital and Monash University, Melbourne, Australia
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
| | - Devendra K. Hiwase
- Royal Adelaide Hospital, Adelaide, Australia
- University of Adelaide, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emad Abro
- Princess Alexandra Hospital, Queensland, Australia
| | - Ashish Bajel
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
| | | | - Ashanka Beligaswatte
- University of Adelaide, Adelaide, Australia
- Flinders Medical Centre, Bedford Park, Australia
| | - John Reynolds
- The Alfred Hospital and Monash University, Melbourne, Australia
| | - Natasha Anstee
- The University of Melbourne, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
| | - Sun Loo
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Northern Hospital, Melbourne, Australia
| | - Chong Chyn Chua
- The Alfred Hospital and Monash University, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Northern Hospital, Melbourne, Australia
| | - Michael Ashby
- The Alfred Hospital and Monash University, Melbourne, Australia
| | | | - Shaun Fleming
- The Alfred Hospital and Monash University, Melbourne, Australia
| | - Chun Y. Fong
- Austin Health and Olivia Newton John Cancer Research Institute, Melbourne, Australia
| | - Tse-Chieh Teh
- The Alfred Hospital and Monash University, Melbourne, Australia
- Box Hill Hospital, Melbourne, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
- Guy's Hospital, London, United Kingdom
| | - Adam Ivey
- The Alfred Hospital and Monash University, Melbourne, Australia
| | - Andrew H. Wei
- Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
4
|
Bahattab S, Assiri A, Alhaidan Y, Trivilegio T, AlRoshody R, Huwaizi S, Almuzzaini B, Alamro A, Abudawood M, Alehaideb Z, Matou-Nasri S. Pharmacological p38 MAPK inhibitor SB203580 enhances AML stem cell line KG1a chemosensitivity to daunorubicin by promoting late apoptosis, cell growth arrest in S-phase, and miR-328-3p upregulation. Saudi Pharm J 2024; 32:102055. [PMID: 38699598 PMCID: PMC11063648 DOI: 10.1016/j.jsps.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by uncontrolled proliferation of myeloid progenitor cells and impaired maturation, leading to immature cell accumulation in the bone marrow and bloodstream, resulting in hematopoietic dysfunction. Chemoresistance, hyperactivity of survival pathways, and miRNA alteration are major factors contributing to treatment failure and poor outcomes in AML patients. This study aimed to investigate the impact of the pharmacological p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 on the chemoresistance potential of AML stem cell line KG1a to the therapeutic drug daunorubicin (DNR). KG1a and chemosensitive leukemic HL60 cells were treated with increasing concentrations of DNR. Cell Titer-Glo®, flow cytometry, phosphokinase and protein arrays, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were employed for assessment of cell viability, half-maximal inhibitory concentration (IC50) determination, apoptotic status detection, cell cycle analysis, apoptosis-related protein and gene expression monitoring. Confocal microscopy was used to visualize caspase and mitochondrial permeability transition pore (mPTP) activities. Exposed at various incubation times, higher DNR IC50 values were determined for KG1a cells than for HL60 cells, confirming KG1a cell chemoresistance potential. Exposed to DNR, late apoptosis induction in KG1a cells was enhanced after SB203580 pretreatment, defined as the combination treatment. This enhancement was confirmed by increased cleavage of poly(ADP-ribose) polymerase, caspase-9, caspase-3, and augmented caspase-3/-7 and mPTP activities in KG1a cells upon combination treatment, compared to DNR. Using phosphokinase and apoptosis protein arrays, the combination treatment decreased survival Akt phosphorylation and anti-apoptotic Bcl-2 expression levels in KG1a cells while increasing the expression levels of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21, compared to DNR. Cell cycle analysis revealed KG1a cell growth arrest in G2/M-phase caused by DNR, while combined treatment led to cell growth arrest in S-phase, mainly associated with cyclin B1 expression levels. Remarkably, the enhanced KG1a cell sensitivity to DNR after SB203580 pretreatment was associated with an increased upregulation of miR-328-3p and slight downregulation of miR-26b-5p, compared to DNR effect. Altogether, these findings could contribute to the development of a new therapeutic strategy by targeting the p38 MAPK pathway to improve treatment outcomes in patients with refractory or relapsed AML.
Collapse
Affiliation(s)
- Sara Bahattab
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Assiri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Abir Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Zeyad Alehaideb
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 20110, United States
| |
Collapse
|
5
|
Li EW, Tran NYK, McCulloch D, Krigstein M, Catalano A, Othman J, Abadir E, Smith C, Iland H. FLT3-TKD Measurable Residual Disease Detection Using Droplet Digital PCR and Clinical Applications in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:5771. [PMID: 38891959 PMCID: PMC11171966 DOI: 10.3390/ijms25115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The tyrosine kinase domain of the FMS-Like tyrosine kinase 3 (FLT3-TKD) is recurrently mutated in acute myeloid leukemia (AML). Common molecular techniques used in its detection include PCR and capillary electrophoresis, Sanger sequencing and next-generation sequencing with recognized sensitivity limitations. This study aims to validate the use of droplet digital PCR (ddPCR) in the detection of measurable residual disease (MRD) involving the common FLT3-TKD mutations (D835Y, D835H, D835V, D835E). Twenty-two diagnostic samples, six donor controls, and a commercial D835Y positive control were tested using a commercial Bio-rad® ddPCR assay. All known variants were identified, and no false positives were detected in the wild-type control (100% specificity and sensitivity). The assays achieved a limit of detection suitable for MRD testing at 0.01% variant allelic fraction. Serial samples from seven intensively-treated patients with FLT3-TKD variants at diagnosis were tested. Five patients demonstrated clearance of FLT3-TKD clones, but two patients had FLT3-TKD persistence in the context of primary refractory disease. In conclusion, ddPCR is suitable for the detection and quantification of FLT3-TKD mutations in the MRD setting; however, the clinical significance and optimal management of MRD positivity require further exploration.
Collapse
Affiliation(s)
- Eric Wenlong Li
- Institute of Hematology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ngoc Yen Kim Tran
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Derek McCulloch
- Institute of Hematology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael Krigstein
- Department of Hematology, St Vincent’s Hospital, Sydney, NSW 2010, Australia
| | - Alberto Catalano
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Jad Othman
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Hematology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Edward Abadir
- Institute of Hematology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Cheryl Smith
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Harry Iland
- Institute of Hematology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Molecular Hematology Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
6
|
Nachmias B, Krichevsky S, Gatt ME, Gross Even-Zohar N, Shaulov A, Haran A, Aumann S, Vainstein V. Standardization of Molecular MRD Levels in AML Using an Integral Vector Bearing ABL and the Mutation of Interest. Cancers (Basel) 2023; 15:5360. [PMID: 38001621 PMCID: PMC10670136 DOI: 10.3390/cancers15225360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Quantitative PCR for specific mutation is being increasingly used in Acute Myeloid Leukemia (AML) to assess Measurable Residual Disease (MRD), allowing for more tailored clinical decisions. To date, standardized molecular MRD is limited to typical NPM1 mutations and core binding factor translocations, with clear prognostic and clinical implications. The monitoring of other identified mutations lacks standardization, limiting its use and incorporation in clinical trials. To overcome this problem, we designed a plasmid bearing both the sequence of the mutation of interest and the ABL reference gene. This allows the use of commercial standards for ABL to determine the MRD response in copy number. We provide technical aspects of this approach as well as our experience with 19 patients with atypical NPM1, RUNX1 and IDH1/2 mutations. In all cases, we demonstrate a correlation between response and copy number. We further demonstrate how copy number monitoring can modulate the clinical management. Taken together, we provide proof of concept of a novel yet simple tool, which allows in-house MRD monitoring for identified mutations, with ABL-based commercial standards. This approach would facilitate large multi-center studies assessing the clinical relevance of selected MRD monitoring.
Collapse
|
7
|
Kolesnikova MA, Sen’kova AV, Pospelova TI, Zenkova MA. Effective Prognostic Model for Therapy Response Prediction in Acute Myeloid Leukemia Patients. J Pers Med 2023; 13:1234. [PMID: 37623484 PMCID: PMC10455213 DOI: 10.3390/jpm13081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by the malignant transformation of bone marrow-derived myeloid progenitor cells with extremely short survival. To select the optimal treatment options and predict the response to therapy, the stratification of AML patients into risk groups based on genetic factors along with clinical characteristics is carried out. Despite this thorough approach, the therapy response and disease outcome for a particular patient with AML depends on several patient- and tumor-associated factors. Among these, tumor cell resistance to chemotherapeutic agents represents one of the main obstacles for improving survival outcomes in AML patients. In our study, a new prognostic scale for the risk stratification of AML patients based on the detection of the sensitivity or resistance of tumor cells to chemotherapeutic drugs in vitro as well as MDR1 mRNA/P-glycoprotein expression, tumor origin (primary or secondary), cytogenetic abnormalities, and aberrant immunophenotype was developed. This study included 53 patients diagnosed with AML. Patients who received intensive or non-intensive induction therapy were analyzed separately. Using correlation, ROC, and Cox regression analyses, we show that the risk stratification of AML patients in accordance with the developed prognostic scale correlates well with the response to therapy and represents an independent predictive factor for the overall survival of patients with newly diagnosed AML.
Collapse
Affiliation(s)
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia;
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia;
| |
Collapse
|
8
|
Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M. Novel Tools for Diagnosis and Monitoring of AML. Curr Oncol 2023; 30:5201-5213. [PMID: 37366878 DOI: 10.3390/curroncol30060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, major advances in the understanding of acute myeloid leukemia (AML) pathogenesis, together with technological progress, have led us into a new era in the diagnosis and follow-up of patients with AML. A combination of immunophenotyping, cytogenetic and molecular studies are required for AML diagnosis, including the use of next-generation sequencing (NGS) gene panels to screen all genetic alterations with diagnostic, prognostic and/or therapeutic value. Regarding AML monitoring, multiparametric flow cytometry and quantitative PCR/RT-PCR are currently the most implemented methodologies for measurable residual disease (MRD) evaluation. Given the limitations of these techniques, there is an urgent need to incorporate new tools for MRD monitoring, such as NGS and digital PCR. This review aims to provide an overview of the different technologies used for AML diagnosis and MRD monitoring and to highlight the limitations and challenges of current versus emerging tools.
Collapse
Affiliation(s)
- Francesca Guijarro
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Neus Villamor
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jordi Esteve
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Hematology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|