1
|
Lin F, Li H, Liu H, Shen J, Zheng L, Huang S, Chen Y. Identification of lysine lactylation (kla)-related lncRNA signatures using XGBoost to predict prognosis and immune microenvironment in breast cancer patients. Sci Rep 2024; 14:20432. [PMID: 39227722 PMCID: PMC11371909 DOI: 10.1038/s41598-024-71482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Breast cancer (BC) stands as a predominant global malignancy, significantly contributing to female mortality. Recently uncovered, histone lysine lactylation (kla) has assumed a crucial role in cancer progression. However, the correlation with lncRNAs remains ambiguous. Scrutinizing lncRNAs associated with Kla not only improves clinical breast cancer management but also establishes a groundwork for antitumor drug development. We procured breast tissue samples, encompassing both normal and cancerous specimens, from The Cancer Genome Atlas (TCGA) database. Utilizing Cox regression and XGBoost methods, we developed a prognostic model using identified kla-related lncRNAs. The model's predictive efficacy underwent validation across training, testing, and the overall cohort. Functional analysis concerning kla-related lncRNAs ensued. We identified and screened 8 kla-related lncRNAs to formulate the risk model. Pathway analysis disclosed the connection between immune-related pathways and the risk model of kla-related lncRNAs. Significantly, the risk scores exhibited a correlation with both immune cell infiltration and immune function, indicating a clear association. Noteworthy is the observation that patients with elevated risk scores demonstrated an increased tumor mutation burden (TMB) and decreased tumor immune dysfunction and exclusion (TIDE) scores, suggesting heightened responses to immune checkpoint blockade. Our study uncovers a potential link between Kla-related lncRNAs and BC, providing innovative therapeutic guidelines for BC management.
Collapse
Affiliation(s)
- Feng Lin
- School of Clinical Medicine, Fujian Medical University, No. 1 Xuefu North Road, University New District, Fuzhou, 350122, Fujian, China
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China
| | - Hang Li
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, 100191, China
| | - Shunyi Huang
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
| | - Yu Chen
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China.
| |
Collapse
|
2
|
Di Nisio E, Manzini V, Licursi V, Negri R. To Erase or Not to Erase: Non-Canonical Catalytic Functions and Non-Catalytic Functions of Members of Histone Lysine Demethylase Families. Int J Mol Sci 2024; 25:6900. [PMID: 39000010 PMCID: PMC11241480 DOI: 10.3390/ijms25136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Histone lysine demethylases (KDMs) play an essential role in biological processes such as transcription regulation, RNA maturation, transposable element control, and genome damage sensing and repair. In most cases, their action requires catalytic activities, but non-catalytic functions have also been shown in some KDMs. Indeed, some strictly KDM-related proteins and some KDM isoforms do not act as histone demethylase but show other enzymatic activities or relevant non-enzymatic functions in different cell types. Moreover, many studies have reported on functions potentially supported by catalytically dead mutant KDMs. This is probably due to the versatility of the catalytical core, which can adapt to assume different molecular functions, and to the complex multi-domain structure of these proteins which encompasses functional modules for targeting histone modifications, promoting protein-protein interactions, or recognizing nucleic acid structural motifs. This rich modularity and the availability of multiple isoforms in the various classes produced variants with enzymatic functions aside from histone demethylation or variants with non-catalytical functions during the evolution. In this review we will catalog the proteins with null or questionable demethylase activity and predicted or validated inactive isoforms, summarizing what is known about their alternative functions. We will then go through some experimental evidence for the non-catalytical functions of active KDMs.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
| | - Valeria Manzini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| |
Collapse
|
3
|
Bush W, Bosart K, Bouley RA, Petreaca RC. KDM4B mutations in human cancers. Mutat Res 2024; 829:111866. [PMID: 38878505 DOI: 10.1016/j.mrfmmm.2024.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024]
Abstract
Homologous recombination (HR) is essential for repair of DNA double-strand breaks (DSBs) and restart of stalled or collapsed replication forks. Most cancers are characterized by mutations in components of the DSB repair pathways. Redundant DSB repair pathways exist in eukaryotes from yeast to humans and recent evidence has shown that complete loss of HR function appears to be lethal. Recent evidence has also shown that cancer cells with mutations in one DSB repair pathway can be killed by inhibiting one or more parallel pathways, a strategy that is currently aggressively explored as a cancer therapy. KDM4B is a histone demethylase with pleiotropic functions, which participates in preparing DSBs for repair by contributing to chromatin remodeling. In this report we carried out a pan-cancer analysis of KDM4B mutations with the goal of understanding their distribution and interaction with other DSB genes. We find that although KDM4B mutations co-occur with DSB repair genes, most KDM4B mutations are not drivers or pathogenic. A sequence conservation analysis from yeast to humans shows that highly conserved residues are resistant to mutation. Finally, all mutations occur in a heterozygous state. A single mutation, R986L, was predicted to significantly affect protein structure using computational modeling. This analysis suggests that KDM4B makes contributions to DSB repair but is not a key player.
Collapse
Affiliation(s)
- Wesley Bush
- Biology Program, The Ohio State University, Marion, OH 43302, USA
| | - Korey Bosart
- Biology Program, The Ohio State University, Marion, OH 43302, USA; Cancer Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Renee A Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA.
| | - Ruben C Petreaca
- Cancer Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA.
| |
Collapse
|
4
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
5
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Deng J, Liao X. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer. BMC Med Genomics 2023; 16:283. [PMID: 37950222 PMCID: PMC10636881 DOI: 10.1186/s12920-023-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Histone lysine lactylation (Kla) is a newly identified histone modification, which plays a crucial role in cancer progression. Hence, we determined the prognostic value of Kla in breast cancer (BC). METHODS We obtained RNA expression profiles of BC from The Cancer Genome Atlas (TCGA), following screening out Kla-specific genes. Furthermore, we determined the prognostic value of Kla by constructing a cox model based on Kla-specific genes. Subsequently, we identified expression of lactate accumulation-related genes and prognostic Kla-specific genes through Human Protein Atlas (HPA), and further performed a correlation analysis based on their expression. Meanwhile, we explored the effects of Kla on BC tumor microenvironment (TME), drug therapy and immunotherapy. Moreover, we predicted the pathways influenced by Kla via gene set enrichment analysis (GSEA). RESULTS A total of 1073 BC samples and 112 normal controls were obtained from TCGA, and 23 tumor samples were removed owing to inadequate clinical information. We identified 257 differentially expressed Kla-specific genes (DEKlaGs) in BC. A cox model involved with CCR7, IGFBP6, NDUFAF6, OVOL1 and SDC1 was established, and risk score could be visualized as an independent biomarker for BC. Meanwhile, Kla was remarkably associated with BC immune microenvironment, drug therapy and immunotherapy. Kla was identified to be related to activation of various BC-related KEGG pathways. CONCLUSION In conclusion, Kla contributes to drug resistance and undesirable immune responses, and plays a crucial role in BC prognosis, suggesting that Kla was expected to be a new therapeutic target for BC.
Collapse
Affiliation(s)
- Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Avenue. Hengyang, Hengyang, 421001, China.
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Pierzynowska K, Gaffke L, Zaucha JM, Węgrzyn G. Transcriptomic Approaches in Studies on and Applications of Chimeric Antigen Receptor T Cells. Biomedicines 2023; 11:biomedicines11041107. [PMID: 37189725 DOI: 10.3390/biomedicines11041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a relatively novel approach, providing a powerful tool in the fight against cancer and bringing new hope for patients. However, despite huge possibilities and promising results of preclinical studies and clinical efficacy, there are various drawbacks to this therapy, including toxicity, possible relapses, restrictions to specific kinds of cancers, and others. Studies desiring to overcome these problems include various modern and advanced methods. One of them is transcriptomics, a set of techniques that analyze the abundance of all RNA transcripts present in the cell at certain moment and under certain conditions. The use of this method gives a global picture of the efficiency of expression of all genes, thus revealing the physiological state and regulatory processes occurring in the investigated cells. In this review, we summarize and discuss the use of transcriptomics in studies on and applications of CAR-T cells, especially in approaches focused on improved efficacy, reduced toxicity, new target cancers (like solid tumors), monitoring the treatment efficacy, developing novel analytical methods, and others.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|