1
|
Bárcenas-Preciado V, Mata-Haro V. Probiotics in miRNA-Mediated Regulation of Intestinal Immune Homeostasis in Pigs: A Physiological Narrative. Microorganisms 2024; 12:1606. [PMID: 39203448 PMCID: PMC11356641 DOI: 10.3390/microorganisms12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The microbiota plays a crucial role in maintaining the host's intestinal homeostasis, influencing numerous physiological functions. Various factors, including diet, stress, and antibiotic use, can lead to such imbalances. Probiotics have been shown to restore the microbiota, contributing to maintaining this balance. For instance, the weaning stage in piglets is crucial; this transition can cause unfavorable changes that may contribute to the onset of diarrhea. Probiotic supplementation has increased due to its benefits. However, its mechanism of action is still controversial; one involves the regulation of intestinal immunity. When recognized by immune system cells through membrane receptors, probiotics activate intracellular signaling pathways that lead to changes in gene expression, resulting in an anti-inflammatory response. This complex regulatory system involves transcriptional and post-transcriptional mechanisms, including the modulation of various molecules, emphasizing microRNAs. They have emerged as important regulators of innate and adaptive immune responses. Analyzing these mechanisms can enhance our understanding of probiotic-host microbiota interactions, providing insights into their molecular functions. This knowledge can be applied not only in the swine industry, but also in studying microbiota-related disorders. Moreover, these studies serve as animal models, helping to understand better conditions such as inflammatory bowel disease and other related disorders.
Collapse
Affiliation(s)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD) Carretera Gustavo E. Astiazarán 46, Col. La Victoria, Hermosillo 83304, Mexico;
| |
Collapse
|
2
|
Wang S, Li M, Liu P, Dong Y, Geng R, Zheng T, Zheng Q, Li B, Ma P. Col1a1 mediates the focal adhesion pathway affecting hearing in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2024; 185:112349. [PMID: 38103809 DOI: 10.1016/j.exger.2023.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a-/- mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a-/- mice were verified by qRT-PCR and Western blot. Compared with miR-29a+/+ mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a-/- mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a+/+ mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a+/+ mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a-/- mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China.
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China; School of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|