1
|
Bagheri V, Rezaei F, Alipour R, Sereshki N, Ahmadipanah V, Rafiee M. Progesterone decreases viability and up regulates membrane progesterone receptors expression on the human Chronic Myeloid Leukemia cell line. Cancer Genet 2024; 288-289:114-117. [PMID: 39522451 DOI: 10.1016/j.cancergen.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Progesterone (P4) has an important effect (activatory or inhibitory) on cell proliferation. Although there is evidence of the impact of progesterone on sex-linked cancers, it can affect other cancer cells expressing P4 receptors (PRs). We evaluated the expression of membrane P4 receptors (mPRs) and the viability in progesterone-treated K562 cells to inspect the possible effects route of progesterone on this (CML) cancer cell line. K562 cells were exposed to various concentrations of progesterone or no exposure for 48 and 72 h. The percentage of viability and cells that expressed mPRα and mPRβ were evaluated by MTT test and flow cytometry respectively. Progesterone significantly increased the expression of mPRα and especially mPRβ on the surface of K562 cells and significantly decreased their viability (p ≤ 0.05). Progesterone can reduce viability in K562 cells. Our findings showed that progesterone affects its receptor expression on K562 cells. Thus it may influence the performance of K562 cells in addition to its direct effects on these cells (via binding to its receptors).
Collapse
MESH Headings
- Humans
- Receptors, Progesterone/metabolism
- Progesterone/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- K562 Cells
- Cell Survival/drug effects
- Up-Regulation/drug effects
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Vahid Bagheri
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fateme Rezaei
- Medical school, Birjand University of Medical Sciences, Birjand, Iran
| | - Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mitra Rafiee
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Konchekov EM, Gudkova VV, Burmistrov DE, Konkova AS, Zimina MA, Khatueva MD, Polyakova VA, Stepanenko AA, Pavlik TI, Borzosekov VD, Malakhov DV, Kolik LV, Gusein-zade N, Gudkov SV. Bacterial Decontamination of Water-Containing Objects Using Piezoelectric Direct Discharge Plasma and Plasma Jet. Biomolecules 2024; 14:181. [PMID: 38397418 PMCID: PMC10886754 DOI: 10.3390/biom14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cold atmospheric plasma has become a widespread tool in bacterial decontamination, harnessing reactive oxygen and nitrogen species to neutralize bacteria on surfaces and in the air. This technology is often employed in healthcare, food processing, water treatment, etc. One of the most energy-efficient and universal methods for creating cold atmospheric plasma is the initiation of a piezoelectric direct discharge. The article presents a study of the bactericidal effect of piezoelectric direct discharge plasma generated using the multifunctional source "CAPKO". This device allows for the modification of the method of plasma generation "on the fly" by replacing a unit (cap) on the working device. The results of the generation of reactive oxygen and nitrogen species in a buffer solution in the modes of direct discharge in air and a plasma jet with an argon flow are presented. The bactericidal effect of these types of plasma against the bacteria E. coli BL21 (DE3) was studied. The issues of scaling the treatment technique are considered.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Victoria V. Gudkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Aleksandra S. Konkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Maria A. Zimina
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mariam D. Khatueva
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vlada A. Polyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Alexandra A. Stepanenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatyana I. Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Valentin D. Borzosekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry V. Malakhov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Namik Gusein-zade
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| |
Collapse
|
4
|
Wang P, Zhou R, Zhou R, Feng S, Zhao L, Li W, Lin J, Rajapakse A, Lee CH, Furnari FB, Burgess AW, Gunter JH, Liu G, Ostrikov KK, Richard DJ, Simpson F, Dai X, Thompson EW. Epidermal growth factor potentiates EGFR(Y992/1173)-mediated therapeutic response of triple negative breast cancer cells to cold atmospheric plasma-activated medium. Redox Biol 2024; 69:102976. [PMID: 38052106 PMCID: PMC10746566 DOI: 10.1016/j.redox.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.
Collapse
Affiliation(s)
- Peiyu Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Liqian Zhao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Wenshao Li
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jinyong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Aleksandra Rajapakse
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Chia-Hwa Lee
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, California 92093, USA
| | - Antony W Burgess
- Walter and Elisa Hall Institute, Melbourne, Victoria 3052, Australia
| | - Jennifer H Gunter
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; Cancer and Ageing Research Program, Woolloongabba, Queensland 4102, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Erik W Thompson
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
5
|
Konchekov EM, Gusein-zade N, Burmistrov DE, Kolik LV, Dorokhov AS, Izmailov AY, Shokri B, Gudkov SV. Advancements in Plasma Agriculture: A Review of Recent Studies. Int J Mol Sci 2023; 24:15093. [PMID: 37894773 PMCID: PMC10606361 DOI: 10.3390/ijms242015093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This review is devoted to a topic of high interest in recent times-the use of plasma technologies in agriculture. The increased attention to these studies is primarily due to the demand for the intensification of food production and, at the same time, the request to reduce the use of pesticides. We analyzed publications, focusing on research conducted in the last 3 years, to identify the main achievements of plasma agrotechnologies and key obstacles to their widespread implementation in practice. We considered the main types of plasma sources used in this area, their advantages and limitations, which determine the areas of application. We also considered the use of plasma-activated liquids and the efficiency of their production by various types of plasma sources.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Namik Gusein-zade
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Alexey S. Dorokhov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Andrey Yu. Izmailov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Babak Shokri
- Physics Department, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| |
Collapse
|