1
|
Ferraro V, Bizzarri C, Bräse S. Thermally Activated Delayed Fluorescence (TADF) Materials Based on Earth-Abundant Transition Metal Complexes: Synthesis, Design and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404866. [PMID: 38984475 PMCID: PMC11426009 DOI: 10.1002/advs.202404866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Materials exhibiting thermally activated delayed fluorescence (TADF) based on transition metal complexes are currently gathering significant attention due to their technological potential. Their application extends beyond optoelectronics, in particular organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), and include also photocatalysis, sensing, and X-ray scintillators. From the perspective of sustainability, earth-abundant metal centers are preferred to rarer second- and third-transition series elements, thus determining a reduction in costs and toxicity but without compromising the overall performances. This review offers an overview of earth-abundant transition metal complexes exhibiting TADF and their application as photoconversion materials. Particular attention is devoted to the types of ligands employed, helping in the design of novel systems with enhanced TADF properties.
Collapse
Affiliation(s)
- Valentina Ferraro
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Busch J, Rehak FR, Ferraro V, Nieger M, Kemell M, Fuhr O, Klopper W, Bräse S. From Mono- to Polynuclear 2-(Diphenylphosphino)pyridine-Based Cu(I) and Ag(I) Complexes: Synthesis, Structural Characterization, and DFT Calculations. ACS OMEGA 2024; 9:2220-2233. [PMID: 38250424 PMCID: PMC10795044 DOI: 10.1021/acsomega.3c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.
Collapse
Affiliation(s)
- Jasmin
M. Busch
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Florian R. Rehak
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Valentina Ferraro
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Martin Nieger
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Marianna Kemell
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Olaf Fuhr
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano-Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|