1
|
Raos D, Vučemilo Paripović N, Ozretić P, Sabol M. Current status of in vitro models for rare gynaecological cancer research. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108549. [PMID: 39048342 DOI: 10.1016/j.ejso.2024.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Gynaecological cancers originate within the female reproductive system and are classified according to the site in the reproductive system where they arise. However, over 50 % of these malignancies are categorized as rare, encompassing 30 distinct histological subtypes, which complicates their diagnosis and treatment. The focus of this review is to give an overview of established in vitro models for the investigation of rare gynaecological cancers, as well as an overview of available online databases that contain detailed descriptions of cell line characteristics. Cell lines represent the main models for the research of carcinogenesis, drug resistance, pharmacodynamics and novel therapy treatment options. Nowadays, classic 2D cell models are increasingly being replaced with 3D cell models, such as spheroids, organoids, and tumoroids because they provide a more accurate representation of numerous tumour characteristics, and their response to therapy differs from the response of adherent cell lines. It is crucial to use the correct cell line model, as rare tumour types can show characteristics that differ from the most common tumour types and can therefore respond unexpectedly to classic treatment. Additionally, some cell lines have been misclassified or misidentified, which could lead to false results. Even though rare gynaecological cancers are rare, this review will demonstrate that there are available options for investigation of such cancers in vitro on biologically relevant models.
Collapse
Affiliation(s)
- Dora Raos
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
2
|
Song WH, Lim YS, Kim JE, Kang HY, Lee C, Rajbongshi L, Hwang SY, Oh SO, Kim BS, Lee D, Song YJ, Yoon S. A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery. Mar Drugs 2024; 22:295. [PMID: 39057404 PMCID: PMC11277582 DOI: 10.3390/md22070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Hae Yeong Kang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| |
Collapse
|
3
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Raitanen J, Barta B, Fuchs H, Hacker M, Balber T, Georg D, Mitterhauser M. Radiobiological Assessment of Targeted Radionuclide Therapy with [ 177Lu]Lu-PSMA-I&T in 2D vs. 3D Cell Culture Models. Int J Mol Sci 2023; 24:17015. [PMID: 38069337 PMCID: PMC10706939 DOI: 10.3390/ijms242317015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro therapeutic efficacy studies are commonly conducted in cell monolayers. However, three-dimensional (3D) tumor spheroids are known to better represent in vivo tumors. This study used [177Lu]Lu-PSMA-I&T, an already clinically applied radiopharmaceutical for targeted radionuclide therapy against metastatic castrate-resistant prostate cancer, to demonstrate the differences in the radiobiological response between 2D and 3D cell culture models of the prostate cancer cell lines PC-3 (PSMA negative) and LNCaP (PSMA positive). After assessing the target expression in both models via Western Blot, cell viability, reproductive ability, and growth inhibition were assessed. To investigate the geometric effects on dosimetry for the 2D vs. 3D models, Monte Carlo simulations were performed. Our results showed that PSMA expression in LNCaP spheroids was highly preserved, and target specificity was shown in both models. In monolayers of LNCaP, no short-term (48 h after treatment), but only long-term (14 days after treatment) radiobiological effects were evident, showing decreased viability and reproductive ability with the increasing activity. Further, LNCaP spheroid growth was inhibited with the increasing activity. Overall, treatment efficacy was higher in LNCaP spheroids compared to monolayers, which can be explained by the difference in the resulting dose, among others.
Collapse
Affiliation(s)
- Julia Raitanen
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Bernadette Barta
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
| | - Hermann Fuchs
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|