1
|
Zhou Y, He H, Ding L, Wang T, Liu X, Zhang M, Zhang A, Fu J. Effects of gene polymorphisms on delayed MTX clearance, toxicity, and metabolomic changes after HD-MTX treatment in children with acute lymphoblastic leukemia. Eur J Pediatr 2024; 183:581-590. [PMID: 37851084 DOI: 10.1007/s00431-023-05267-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
This study aims to assess the role of methotrexate-related gene polymorphisms in children with acute lymphoblastic leukemia (ALL) during high-dose methotrexate (HD-MTX) therapy and to explore their effects on serum metabolites before and after HD-MTX treatment. The MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435C>T, and GSTP1 313A>G genotypes of 189 children with ALL who received chemotherapy with the CCCG-ALL-2020 regimen from January 2020 to April 2023 were analyzed, and toxic effects were reported according to the Common Terminology Criteria for Adverse Events (CTCAE, version 5.0). Fasting peripheral blood serum samples were collected from 27 children before and after HD-MTX treatment, and plasma metabolites were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). The results of univariate and multivariate analyses showed that MTHFR 677C>T and ABCB1 3435 C>T gene polymorphisms were associated with the delayed MTX clearance (P < 0.05) and lower platelet count after treatment in children with MTHFR 677 mutation compared with wild-type ones (P < 0.05), and pure mutations in ABCB1 3435 were associated with higher serum creatinine levels (P < 0.05). No significant association was identified between MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435 C>T, and GSTP1 313A>G genes and hepatotoxicity or nephrotoxicity (P > 0.05). However, the serum metabolomic analysis indicated that the presence of the MTHFR 677C > T gene polymorphism could potentially contribute to delayed MTX clearance by influencing L-phenylalanine metabolism, leading to the occurrence of related toxic side effects. CONCLUSION MTHFR 677C>T and ABCB1 3435 C>T predicted the risk of delayed MTX clearance during HD-MTX treatment in children with ALL. Serum L-phenylalanine levels were significantly elevated after HD-MTX treatment in children with the MTHFR 677C>T mutation gene. TRIAL REGISTRATION This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR2000035264; registration: 2020/08/05; https://www.chictr.org.cn/ ). WHAT IS KNOWN • MTX-related genes play an important role in MTX pharmacokinetics and toxicity, but results from different studies are inconsistent and the mechanisms involved are not clear. WHAT IS NEW • Characteristics, prognosis, polymorphisms of MTX-related genes, and metabolite changes were comprehensively evaluated in children treated with HD-MTX chemotherapy. • Analysis revealed that both heterozygous and pure mutations in MTHFR 677C>T resulted in a significantly increased risk of delayed MTX clearance, and that L-phenylalanine has the potential to serve as a predictive marker for the metabolic effects of the MTHFR 677C>T polymorphism.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Haoping He
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Luping Ding
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Tianjiao Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Xiaomeng Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Minghao Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong University, Jinan, 250100, Shandong Province, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Shandong University, Jinan, 250100, Shandong Province, China.
| | - Jinqiu Fu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
2
|
Cheema Y, Linton KJ, Jabeen I. Molecular Modeling Studies to Probe the Binding Hypothesis of Novel Lead Compounds against Multidrug Resistance Protein ABCB1. Biomolecules 2024; 14:114. [PMID: 38254714 PMCID: PMC10813284 DOI: 10.3390/biom14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The expression of drug efflux pump ABCB1/P-glycoprotein (P-gp), a transmembrane protein belonging to the ATP-binding cassette superfamily, is a leading cause of multidrug resistance (MDR). We previously curated a dataset of structurally diverse and selective inhibitors of ABCB1 to develop a pharmacophore model that was used to identify four novel compounds, which we showed to be potent and efficacious inhibitors of ABCB1. Here, we dock the inhibitors into a model structure of the human transporter and use molecular dynamics (MD) simulations to report the conformational dynamics of human ABCB1 induced by the binding of the inhibitors. The binding hypotheses are compared to the wider curated dataset and those previously reported in the literature. Protein-ligand interactions and MD simulations are in good agreement and, combined with LipE profiling, statistical and pharmacokinetic analyses, are indicative of potent and selective inhibition of ABCB1.
Collapse
Affiliation(s)
- Yasmeen Cheema
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| | - Kenneth J. Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science and Technology, Sector H-12, Islamabad 44000, Pakistan;
| |
Collapse
|
3
|
Dada R. Redefining Precision Management of r/r Large B-Cell Lymphoma: Novel Antibodies Take on CART and BMT in the Quest for Future Treatment Strategies. Cells 2023; 12:1858. [PMID: 37508523 PMCID: PMC10378108 DOI: 10.3390/cells12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment paradigms for patients with relapsed large B-cell lymphoma are expanding. Chimeric antigen receptor technology (CAR-T) has revolutionized the management of these patients. Novel bispecific antibodies and antibody-drug conjugates, used as chemotherapy-free single agents or in combination with other novel therapeutics, have been quickly introduced into the real-world setting. With such a paradigm shift, patients have an improved chance of better outcomes with unpredictable complete remission rates. Additionally, the excellent tolerance of new antibodies targeting B-cell lymphomas is another motivation to broaden its use in relapsed and refractory patients. With the increasing number of approved therapy approaches, future research needs to focus on optimizing the sequence and developing new combination strategies for these antibodies, both among themselves and with other agents. Clinical, pathological, and genetic risk profiling can assist in identifying which patients are most likely to benefit from these costly therapeutic options. However, new combinations may lead to new side effects, which we must learn to deal with. This review provides a comprehensive overview of the current state of research on several innovative antibodies for the precision management of large B-cell lymphoma. It explores various treatment strategies, such as CAR-T vs. ASCT, naked antibodies, antibody-drug conjugates, bispecific antibodies, and bispecific T-cell engagers, as well as discussing the challenges and future perspectives of novel treatment strategies. We also delve into resistance mechanisms and factors that may affect decision making. Moreover, each section provides a detailed analysis of the available literature and ongoing clinical trials.
Collapse
Affiliation(s)
- Reyad Dada
- King Faisal Specialist Hospital and Research Centre, Jeddah 21499, Saudi Arabia; ; Tel.: +966-2-6677777 (ext. 64065); Fax: +966-2-6677777 (ext. 64030)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|