1
|
Wahid E, Ocheja OB, Oguntomi SO, Pan R, Grattieri M, Guaragnella N, Guaragnella C, Marsili E. Immobilized Saccharomyces cerevisiae viable cells for electrochemical biosensing of Cu(II). Sci Rep 2025; 15:2678. [PMID: 39838043 PMCID: PMC11751108 DOI: 10.1038/s41598-025-86702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity. Alternatively, semiconductive biocompatible coatings can be used for viable cell immobilization, achieving reproducible coverage and resulting in a stable biosensor response. In this work, we use a polydopamine (PDA)-based coating to immobilize Saccharomyces cerevisiae yeast viable cells on carbon screen printed electrodes (SPE) for Cu(II) detection, with potassium ferricyanide (K3[Fe (CN)6]) as a redox mediator. Under these conditions, the current output correlates with Cu (II) concentration, reaching a limit of detection of 2.2 µM, as calculated from the chronoamperometric response. The bioelectrochemical results are supported by standard viability assays, microscopy, and electrochemical impedance spectroscopy. The PDA coatings can be functionalised with different mutant strains, thus expanding the toolbox for biosensor design in bioremediation.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Sunday Olakunle Oguntomi
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Run Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Matteo Grattieri
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
- Institute for Physicochemical Processes (CNR-IPCF), National Research Council, Via E. Orabona 4, 70125, Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Cataldo Guaragnella
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
2
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Rakhmanova TI, Gessler NN, Isakova EP, Klein OI, Deryabina YI, Popova TN. The Key Enzymes of Carbon Metabolism and the Glutathione Antioxidant System Protect Yarrowia lipolytica Yeast Against pH-Induced Stress. J Fungi (Basel) 2024; 10:747. [PMID: 39590666 PMCID: PMC11595425 DOI: 10.3390/jof10110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in Yarrowia lipolytica yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress. It is probable that a change in the enzyme activity in the mitochondria matrix is involved in the regulation of the cellular metabolism of Y. lipolytica, which allows the species to prosper at an extreme ambient pH. It distinguishes it from any other type of ascomycete. A close relationship between the induction of the Krebs cycle enzymes and the key enzymes of the glutathione system accompanied by an increased level of reduced glutathione was shown. The assumption that the increased activity of the Krebs cycle dehydrogenases and promotion of the pentose phosphate pathway at pH stress launches a set of events determining the adaptive response of Y. lipolytica yeast.
Collapse
Affiliation(s)
- Tatyana I. Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| | - Natalia N. Gessler
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Elena P. Isakova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Yulia I. Deryabina
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| |
Collapse
|
4
|
Di Noia MA, Ocheja OB, Scarcia P, Pisano I, Messina E, Agrimi G, Palmieri L, Guaragnella N. Lack of Mitochondrial DNA Provides Metabolic Advantage in Yeast Osmoadaptation. Biomolecules 2024; 14:704. [PMID: 38927107 PMCID: PMC11201435 DOI: 10.3390/biom14060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Alterations in mitochondrial function have been linked to a variety of cellular and organismal stress responses including apoptosis, aging, neurodegeneration and tumorigenesis. However, adaptation to mitochondrial dysfunction can occur through the activation of survival pathways, whose mechanisms are still poorly understood. The yeast Saccharomyces cerevisiae is an invaluable model organism for studying how mitochondrial dysfunction can affect stress response and adaptation processes. In this study, we analyzed and compared in the absence and in the presence of osmostress wild-type cells with two models of cells lacking mitochondrial DNA: ethidium bromide-treated cells (ρ0) and cells lacking the mitochondrial pyrimidine nucleotide transporter RIM2 (ΔRIM2). Our results revealed that the lack of mitochondrial DNA provides an advantage in the kinetics of stress response. Additionally, wild-type cells exhibited higher osmosensitivity in the presence of respiratory metabolism. Mitochondrial mutants showed increased glycerol levels, required in the short-term response of yeast osmoadaptation, and prolonged oxidative stress. The involvement of the mitochondrial retrograde signaling in osmoadaptation has been previously demonstrated. The expression of CIT2, encoding the peroxisomal isoform of citrate synthase and whose up-regulation is prototypical of RTG pathway activation, appeared to be increased in the mutants. Interestingly, selected TCA cycle genes, CIT1 and ACO1, whose expression depends on RTG signaling upon stress, showed a different regulation in ρ0 and ΔRIM2 cells. These data suggest that osmoadaptation can occur through different mechanisms in the presence of mitochondrial defects and will allow us to gain insight into the relationships among metabolism, mitochondria-mediated stress response, and cell adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.D.N.); (O.B.O.); (P.S.); (I.P.); (E.M.); (G.A.); (L.P.)
| |
Collapse
|
5
|
Wahid E, Ocheja OB, Guaragnella N, Guaragnella C. A Matlab-based application for quantification of yeast cell growth on solid media. J R Soc Interface 2024; 21:20230695. [PMID: 38503339 PMCID: PMC10950458 DOI: 10.1098/rsif.2023.0695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Quantitative assessment of growth and survival is a suitable technique in studying biochemical, genetic and physiological processes in the cells. The budding yeast Saccharomyces cerevisiae is one of the most widely used eukaryotic model organisms for studying cellular mechanisms and processes in evolutionarily distant species, including humans. Yeast growth can be evaluated on both liquid and solid media by measuring cell suspension turbidity and colony forming units, respectively. Several software tools utilizing different parameters have been proposed to quantify yeast growth on solid media. Here, we developed a Matlab-based application which provides a rapid and robust quantitative yeast growth analysis from spot plating assay. Spot plating assay is a typical procedure to evaluate yeast growth in low-throughput laboratory settings, including growth on different nutrient sources or treatment with specific stressors. The app has a one-step installation process, a self-explanatory interface and shorter analysis steps compared with previous established methods, providing a useful tool for both expert and non-expert yeast researchers.
Collapse
Affiliation(s)
- Ehtisham Wahid
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Puglia 70125, Italy
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, Puglia 70125, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, Puglia 70125, Italy
| | - Cataldo Guaragnella
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Puglia 70125, Italy
| |
Collapse
|
6
|
Assalve G, Lunetti P, Zara V, Ferramosca A. Ctp1 and Yhm2: Two Mitochondrial Citrate Transporters to Support Metabolic Flexibility of Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:1870. [PMID: 38339147 PMCID: PMC10855732 DOI: 10.3390/ijms25031870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Differently from higher eukaryotic cells, in the yeast Saccharomyces cerevisiae there are two mitochondrial carrier proteins involved in the transport of citrate: Ctp1 and Yhm2. Very little is known about the physiological role of these proteins. Wild-type and mutant yeast strains deleted in CTP1 and YHM2 were grown in media supplemented with a fermentable (glucose) or a nonfermentable (ethanol) carbon source. To assess changes in Ctp1 and Yhm2 mRNA expression levels, real-time PCR was performed after total RNA extraction. In the wild-type strain, the metabolic switch from the exponential to the stationary phase is associated with an increase in the expression level of the two citrate transporters. In addition, the results obtained in the mutant strains suggest that the presence of a single citrate transporter can partially compensate for the absence of the other. Ctp1 and Yhm2 differently contribute to fermentative and respiratory metabolism. Moreover, the two mitochondrial carriers represent a link between the Krebs cycle and the glyoxylate cycle, which play a key role in the metabolic adaptation strategies of S. cerevisiae.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
7
|
Bui THD, Labedzka-Dmoch K. RetroGREAT signaling: The lessons we learn from yeast. IUBMB Life 2024; 76:26-37. [PMID: 37565710 DOI: 10.1002/iub.2775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
Collapse
Affiliation(s)
- Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|