1
|
Wang X, Liu L, Shen R, Wang Q, Xie X, Liu W, Yu Z, Li X, Guo X, Yang F. A novel CBM serving as a module for efficiently decomposing xanthan by modifying the processivity of hydrolase. Carbohydr Polym 2025; 347:122747. [PMID: 39486976 DOI: 10.1016/j.carbpol.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The inefficient decomposition of polysaccharides, particularly branched polysaccharides limits their large-scale industrial applications. Further understanding and modification of glycoside hydrolases (GHs) processivity is expected to overcome this limitation. Here, a novel xanthan-binding CBM (MiXBM), which was supposed to alter the processivity of GHs, was systematically characterized. Phylogeny and structure analyses indicated that MiXBM is closely related to putative polysaccharide side chain-binding modules. Quantitative binding assays further revealed that MiXBM probably has a high affinity for xanthan side chain via a variable loop site. Moreover, catalytic performance demonstrated that xanthanase chimeras containing MiXBM promote highly efficient hydrolysis of xanthan because of improved substrate accessibility. Notably, MiXBM was observed to enhance the processivity of xanthanase, owing to its high substrate affinity to the repeating unit xanthan. Furthermore, sequential hydrolysis of xanthan by xanthanases with varying processivity resulted in significantly increased hydrolytic efficiency and focused oligoxanthans array. These results expand understanding of CBM-substrate recognition and shed light on efficient degradation of other regularly branched polysaccharides using modified GHs.
Collapse
Affiliation(s)
- Xueyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Le Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Ruiyu Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Qian Wang
- Division of Biotechnology, Chinese Academy of Sciences Dalian Institute of Chemical Physics, Zhongshan Road, Dalian, PR China
| | - Xiaoqi Xie
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Weiming Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Zhimin Yu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| |
Collapse
|
2
|
Han R, Baudrexl M, Ludwig C, Berezina OV, Rykov SV, Liebl W. Identification of a novel xanthan-binding module of a multi-modular Cohnella sp. xanthanase. Front Microbiol 2024; 15:1386552. [PMID: 38596379 PMCID: PMC11002231 DOI: 10.3389/fmicb.2024.1386552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the β-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the β-fructan polysaccharides inulin and levan.
Collapse
Affiliation(s)
- Rui Han
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Sergey V. Rykov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Wolfgang Liebl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Berezina OV, Rykov SV, Schwarz WH, Liebl W. Xanthan: enzymatic degradation and novel perspectives of applications. Appl Microbiol Biotechnol 2024; 108:227. [PMID: 38381223 PMCID: PMC10881899 DOI: 10.1007/s00253-024-13016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
The extracellular heteropolysaccharide xanthan, synthesized by bacteria of the genus Xanthomonas, is widely used as a thickening and stabilizing agent across the food, cosmetic, and pharmaceutical sectors. Expanding the scope of its application, current efforts target the use of xanthan to develop innovative functional materials and products, such as edible films, eco-friendly oil surfactants, and biocompatible composites for tissue engineering. Xanthan-derived oligosaccharides are useful as nutritional supplements and plant defense elicitors. Development and processing of such new functional materials and products often necessitate tuning of xanthan properties through targeted structural modification. This task can be effectively carried out with the help of xanthan-specific enzymes. However, the complex molecular structure and intricate conformational behavior of xanthan create problems with its enzymatic hydrolysis or modification. This review summarizes and analyzes data concerning xanthan-degrading enzymes originating from microorganisms and microbial consortia, with a particular focus on the dependence of enzymatic activity on the structure and conformation of xanthan. Through a comparative study of xanthan-degrading pathways found within various bacterial classes, different microbial enzyme systems for xanthan utilization have been identified. The characterization of these new enzymes opens new perspectives for modifying xanthan structure and developing innovative xanthan-based applications. KEY POINTS: • The structure and conformation of xanthan affect enzymatic degradation. • Microorganisms use diverse multienzyme systems for xanthan degradation. • Xanthan-specific enzymes can be used to develop xanthan variants for novel applications.
Collapse
Affiliation(s)
- Oksana V Berezina
- National Research Centre «Kurchatov Institute», Academician Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Sergey V Rykov
- National Research Centre «Kurchatov Institute», Academician Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Wolfgang H Schwarz
- Chair of Microbiology, Technical University of Munich, TUM School of Life Sciences, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, TUM School of Life Sciences, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|