1
|
Wan H, Yu L, Zhang X, Cui X, Li S, Guo S, Mu S, Kang X. Identification of a Mnlrig-1 involved in testis reproductive immunity in the oriental river prawn Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105273. [PMID: 39326647 DOI: 10.1016/j.dci.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The testis evolves a highly organized testicular microenvironment to support spermatogenesis. However, the knowledge about it is limited in crustacean. In this study, we identified a member of immunoglobulin superfamily (IgSF) from Macrobrachium nipponense testis and explored its roles as a potential pattern recognition receptor (PRR) involved in reproductive immunity. Based on the domains it contains and homology analysis result, we designate it as leucine-rich repeats and immunoglobulin-like domains protein-1 (MnLrig-1). The Mnlrig-1 comprises a 3288 bp open reading frame (ORF) encoding a 1095 amino acid protein. MnLrig-1 is consisted of one signaling peptide; one LRR_NT domain; eight LRR domains; five LRR_TYP domains; one LRR_CT domain; three IGc2 regions; one transmembrane region, and C-terminal cytoplasmic tail, sharing similar domains with orthologs in other crustacean species. MnLrig-1 is widely expressed in various tissues of M. nipponense. Mnlrig-1 is significantly induced by LPS, PGN, Aeromonas hydrophila, and Vibrio alginolyticus challenge in the testis at 3 h and maintained a high level from 3 h to 24 h. Additionally, two recombinant immunoglobulin domains of MnLrig-1 are obtained, while only one domain shows direct binding affinity towards LPS, PGN, Escherichia coli, A. hydrophila, Staphylococcus aureus, and Bacillus subtilis in vitro. Moreover, silencing Mnlrig-1 results in a significant upregulation of three anti-lipopolysaccharide factors (ALFs) in the testis. These results reveal the potential role of MnLrig-1 as a PRR involved in the testis reproductive immunity in M. nipponense. The insights gained from this study will expand our understanding of immune system in crustacean and may have implications for aquaculture and disease management in crustaceans.
Collapse
Affiliation(s)
- Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Research Station of Biology, Hebei University, Baoding City, Hebei Province, 071002, China
| | - Lei Yu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiaoyu Zhang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shaochun Li
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Wan H, Yu L, Cui X, Guo S, Mu S, Kang X. A pattern recognition receptor interleukin-1 receptor is involved in reproductive immunity in Macrobrachium nipponense ovary. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109481. [PMID: 38479568 DOI: 10.1016/j.fsi.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
The family of TIR domain-containing receptors includes numerous proteins involved in innate immunity. In this study, a member of this family was characterized from the ovary of the oriental river prawn Macrobrachium nipponense and identified as interleukin-1 receptor (MnIL-1R). Meanwhile, to elucidate the conservation of IL-1R, its orthologous were identified in several crustacean species as well. In addition, the expression pattern of MnIL-1R in various adult tissues and post different pathogen-associated molecular patterns (PAMPs) challenge in ovary was analyzed with qRT-PCR technology. Finally, the roles of MnIL-1R in the ovary were analyzed by RNAi technology. The main results are as follows: (1) MnIL-1R comprises a 1785 bp ORF encoding 594 amino acids and is structurally composed of five domains: a signal peptide, two immunoglobulin (IG) domains, a transmembrane region, and a TIR-2 domain; (2) the TIR domain showed a high conservation among analyzed crustacean species; (3) MnIL-1R is widely detected in all tested tissues including ovary; (4) MnIL-1R showed a positive response to challenges with LPS, PGN, and polyI:C in the ovary; (5) its IG domain showed strong binding ability to LPS and PGN, confirming its role as a pattern recognition receptor; (6) the expression patterns of several members of the Toll signaling pathway (Myd88, TRAF-6, Dorsal, and Relish) was similar to that of MnIL-1R after challenges with LPS, PGN, and polyI:C in the ovary; (7) the silencing of MnIL-1R resulted in down-regulation of theses gene' (Myd88, TRAF-6, Dorsal, and Relish) expression level in the ovary. These results suggest that MnIL-1R can activate the Toll signaling pathway in the ovary by directly recognizing LPS and PGN through its IG domain, thereby contributing to the immune response in the ovary of M. nipponense.
Collapse
Affiliation(s)
- Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province, 071002, China
| | - Lei Yu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|