1
|
Kumari S, Vijaykumar S, Kumar V, Ranjan R, Alti D, Singh V, Ahmed G, Sahoo GC, Pandey K, Kumar A. In silico and in vitro evaluation of the immunogenic potential of Leishmania donovani ascorbate peroxidase and its derived peptides. Acta Trop 2024; 260:107381. [PMID: 39244139 DOI: 10.1016/j.actatropica.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The control and eradication of any infectious disease is only possible with a potential vaccine, which has not been accomplished for human visceral leishmaniasis (VL). The lack of vaccines may increase the risk of VL outbreaks periodically in endemic zones. Identifying a reliable vaccine candidate for Leishmania is a major challenge. Here, we considered Leishmania donovani ascorbate peroxidase (LdAPx) for its in vitro evaluation with the hope of future vaccine candidates for VL. LdAPx was selected based on its unique presence in Leishmania and virulence in VL pathogenesis. Initially, we found antibodies against recombinant LdAPx (rLdAPx) in the serum of VL patients. Therefore, using bioinformatics, we predicted and selected ten (MHC class I and II) peptides. These peptides, evaluated in vitro with PBMCs from healthy, active VL, and treated VL individuals induced PBMC proliferation, IFN-γ secretion, and Nitric Oxide (NO) production, indicating host-protective immune responses. Among them, three peptides (PEP6, PEP8, and PEP9) consistently elicited a Th1-type immune response in PBMCs. Treated VL individuals showed a stronger Th1 response compared to active VL patients and healthy subjects, highlighting these peptides' potential as vaccine candidates. Further studies are on the way toward evaluating the LdAPx-derived peptides or sub-unit vaccine in animal models against the L. donovani challenge.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Saravanan Vijaykumar
- Statistics/Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India; National Center for Diseases Informatics and Research, Bengaluru, 562110, Karnataka, India
| | - Vikash Kumar
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ravi Ranjan
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Dayakar Alti
- Department of Immunology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Veer Singh
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ghufran Ahmed
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India
| | - Ashish Kumar
- Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, Bihar, India.
| |
Collapse
|
2
|
Kashif M, Waseem M, Subbarao N. In silico prediction of CD8 + and CD4 + T cell epitopes in Leishmania major proteome: Using immunoinformatics. J Mol Graph Model 2024; 129:108759. [PMID: 38492406 DOI: 10.1016/j.jmgm.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The leishmaniases are NDTs (neglected tropical diseases) that affect people all over the world. They are brought on by protozoans from the genus Leishmania and disseminated by phlebotomine flies that are afflicted with the disease. The best option to manage and lower the incidence of these diseases has been thought by the creation of a safe and effective vaccination. This research used an in silico based mining approach to look for high potential epitopes that might bind to MHC Class I and MHC Class II molecules (mainly; HLA-A*02:01 & HLA-DRB1*03:01) from human population in order to promote vaccine development. Based on the presence of signal peptides, GPI anchors, antigenicity predictions, and a subtractive proteomic technique, we have screened 17 putative antigenic proteins from the 8083 total proteins of L. major. After that thorough immunogenic epitope prediction were done using IEDB-AR tools. We isolated five immunogenic epitopes (three 9-mer & two 15-mer) from five antigenic proteins through docking and MD simulation analysis. Finally, these five anticipated epitopes, viz., TLPEIPVNV, ELMAPVFGL, TLAAAVALL, NSINIRLDGVTSAGF and NVPLVVDASSLFRVA have considerably stronger binding potential with their respective alleles and may trigger immunological responses. The goal of this work was to identify MHC restricted epitopes for CD8+ and CD4+ T cells activation using immunoinformatics in order to identify potential vaccine candidates against L. major parasites.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mohd Waseem
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Tiwari R, Singh VK, Rajneesh, Kumar A, Gautam V, Kumar R. MHC tetramer technology: Exploring T cell biology in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:327-345. [PMID: 38762273 DOI: 10.1016/bs.apcsb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Major histocompatibility complex (MHC) tetramers stand as formidable tools within T cell biology, facilitating the exploration and comprehension of immune responses. These artificial molecules, comprising four bound MHC molecules, typically with a specified peptide and a fluorescent label, play a pivotal role in characterizing T cell subsets, monitoring clonal expansion, and unraveling T cell dynamics during responses to infections or immunotherapies. Beyond their applications in T cell biology, MHC tetramers prove valuable in investigating a spectrum of diseases such as infectious diseases, autoimmune disorders, and cancers. Their instrumental role extends to vaccine research and development. Notably, when appropriately configured, tetramers transcend T cell biology research and find utility in exploring natural killer T cells and contributing to specific T cell clonal deletions.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
4
|
Bano N, Kumar A. Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes. J Genet Eng Biotechnol 2023; 21:128. [PMID: 37987878 PMCID: PMC10663418 DOI: 10.1186/s43141-023-00592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunoinformatics is an emerging interdisciplinary field which integrates immunology, bioinformatics, and computational biology to study the immune system. In this study, we apply immunoinformatics approaches to explore the dengue proteome in order to design a multi-epitope vaccine construct. METHODS We used existing databases and algorithms to predict potential epitopes on dengue proteins and used a bioinformatics approach to identify the most promising epitopes. We then used molecular modelling to develop a multi-epitope construct which could be used as a potential vaccine. The results of this study demonstrate that immunoinformatics is a powerful tool for exploring and designing potential vaccines for infectious diseases like dengue. RESULTS Here, we found four CD4+ epitopes NLKYSVIVTVHTGDQ, ANPIVTDKEKPVNIE, LDPVVYDAKFEKQL, and VGAIALDFKPGTSGS that were used to design vaccine construct. The vaccine construct docked with TLR5. RMSD values suggest that docked complex of TLR5 and vaccine construct have putative stable interaction to induce immunogenic effects on host. CONCLUSIONS Furthermore, our study provides a proof of concept for the use of immunoinformatics approaches in DENV vaccine design. This vaccine can be effective in treating patients infected with DENV virus.
Collapse
Affiliation(s)
- Nishat Bano
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India.
| |
Collapse
|
5
|
De-Simone SG. Recent Advances in Biochemistry and Molecular Biology of Infectious Diseases. Int J Mol Sci 2023; 24:ijms24108958. [PMID: 37240305 DOI: 10.3390/ijms24108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This Editorial highlights the various observations made in the Special Issue of the International Journal of Molecular Sciences on "Recent Advances in Biochemistry and Molecular Biology of Infectious Diseases" [...].
Collapse
Affiliation(s)
- Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cell lar Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|