1
|
Lee JM, Yoo MC, Kim YJ, Kim SS, Yeo SG. Expression of ChAT, Iba-1, and nNOS in the Central Nervous System following Facial Nerve Injury. Antioxidants (Basel) 2024; 13:595. [PMID: 38790700 PMCID: PMC11118893 DOI: 10.3390/antiox13050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Kim DS, Jo NG, Lee DW, Ko MH, Seo JH, Kim GW. Ultrasonographic Contrast and Therapeutic Effects of Hydrogen Peroxide-Responsive Nanoparticles in a Rat Model with Sciatic Neuritis. Int J Nanomedicine 2024; 19:3031-3044. [PMID: 38562612 PMCID: PMC10982809 DOI: 10.2147/ijn.s447691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Peripheral nerve damage lacks an appropriate diagnosis consistent with the patient's symptoms, despite expensive magnetic resonance imaging or electrodiagnostic assessments, which cause discomfort. Ultrasonography is valuable for diagnosing and treating nerve lesions; however, it is unsuitable for detecting small lesions. Poly(vanillin-oxalate) (PVO) nanoparticles are prepared from vanillin, a phytochemical with antioxidant and anti-inflammatory properties. Previously, PVO nanoparticles were cleaved by H2O2 to release vanillin, exert therapeutic efficacy, and generate CO2 to increase ultrasound contrast. However, the role of PVO nanoparticles in peripheral nerve lesion models is still unknown. Herein, we aimed to determine whether PVO nanoparticles can function as contrast and therapeutic agents for nerve lesions. Methods To induce sciatic neuritis, rats were administered a perineural injection of carrageenan using a nerve stimulator under ultrasonographic guidance, and PVO nanoparticles were injected perineurally to evaluate ultrasonographic contrast and therapeutic effects. Reverse transcription-quantitative PCR was performed to detect mRNA levels of pro-inflammatory cytokines, ie, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. Results In the rat model of sciatic neuritis, PVO nanoparticles generated CO2 bubbles to increase ultrasonographic contrast, and a single perineural injection of PVO nanoparticles suppressed the expression of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2, reduced the expression of F4/80, and increased the expression of GAP43. Conclusion The results of the current study suggest that PVO nanoparticles could be developed as ultrasonographic contrast agents and therapeutic agents for nerve lesions.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Nam-Gyu Jo
- Department of Physical Medicine and Rehabilitation, Hansol Convalescence Rehabilitation Hospital, Jeonju, Republic of Korea
| | - Dong-Won Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jeong-Hwan Seo
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Brezgunova AA, Andrianova NV, Saidova AA, Potashnikova DM, Abramicheva PA, Manskikh VN, Mariasina SS, Pevzner IB, Zorova LD, Manzhulo IV, Zorov DB, Plotnikov EY. Anti-Inflammatory Effect of Synaptamide in Ischemic Acute Kidney Injury and the Role of G-Protein-Coupled Receptor 110. Int J Mol Sci 2024; 25:1500. [PMID: 38338779 PMCID: PMC10855239 DOI: 10.3390/ijms25031500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.
Collapse
Affiliation(s)
- Anna A. Brezgunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Aleena A. Saidova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Daria M. Potashnikova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Sofia S. Mariasina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research and Educational Resource Center “Pharmacy”, RUDN University, 117198 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Igor V. Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
4
|
Starinets A, Ponomarenko A, Tyrtyshnaia A, Manzhulo I. Synaptamide modulates glial and neurotransmitter activity in the spinal cord during neuropathic pain. J Chem Neuroanat 2023; 134:102361. [PMID: 37935251 DOI: 10.1016/j.jchemneu.2023.102361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
N-docosahexaenoylethanolamine, or synaptamide, is an endogenous metabolite of docosahexaenoic acid that is known for synaptogenic and neurogenic effects. In our previous studies we have shown that synaptamide attenuates neuropathic pain, facilitates remyelination, and reduces neuroinflammation after the chronic constriction injury (CCI) of the sciatic nerve in rats. In the current study, we show that daily synaptamide administration (4 mg/kg/day) within 14 days post-surgery: (1) decreases micro- and astroglia activity in the dorsal and ventral horns of the lumbar spinal cord; (2) modulates pro-inflammatory (IL1β, IL6) and anti-inflammatory (IL4, IL10) cytokine level in the serum and spinal cord; (3) leads to a rise in synaptamide and anandamide concentration in the spinal cord; (4) enhances IL10, CD206 and N-acylethanolamine-hydrolyzing acid amidase synthesis in macrophage cell culture following LPS-induced inflammation. Thus, the ability of synaptamide to modulate glial and cytokine activity indicates its potential for implementation in the treatment peripheral nerve injury.
Collapse
Affiliation(s)
- Anna Starinets
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Arina Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
5
|
Tyrtyshnaia A, Manzhulo O, Manzhulo I. Synaptamide Ameliorates Hippocampal Neurodegeneration and Glial Activation in Mice with Traumatic Brain Injury. Int J Mol Sci 2023; 24:10014. [PMID: 37373162 DOI: 10.3390/ijms241210014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major concern for public health worldwide, affecting 55 million people and being the leading cause of death and disability. To improve the outcomes and effectiveness of treatment for these patients, we conducted a study on the potential therapeutic use of N-docosahexaenoylethanolamine (synaptamide) in mice using the weight-drop injury (WDI) TBI model. Our study focused on exploring synaptamide's effects on neurodegeneration processes and changes in neuronal and glial plasticity. Our findings showed that synaptamide could prevent TBI-associated working memory decline and neurodegenerative changes in the hippocampus, and it could alleviate decreased adult hippocampal neurogenesis. Furthermore, synaptamide regulated the production of astro- and microglial markers during TBI, promoting the anti-inflammatory transformation of the microglial phenotype. Additional effects of synaptamide in TBI include stimulating antioxidant and antiapoptotic defense, leading to the downregulation of the Bad pro-apoptotic marker. Our data suggest that synaptamide has promising potential as a therapeutic agent to prevent the long-term neurodegenerative consequences of TBI and improve the quality of life.
Collapse
Affiliation(s)
- Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Olga Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| |
Collapse
|