1
|
Jiang W, Yin F, Bian X, Wang Z, Zhang C. The mechanism study of LncRNA AC012181.2 targeting HERPUD1 protein in regulating stromal stem cells participating in metabolic reprogramming for gastric cancer metastasis. Int Immunopharmacol 2025; 148:113978. [PMID: 39879832 DOI: 10.1016/j.intimp.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVE To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies. METHOD The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors. Techniques such as cell viability assays, quantitative PCR (qPCR), Western blotting, RNA pull-down and RNA-FISH were utilized to validate the interaction between lncRNA AC012181.2 and HERPUD1 protein. Flow cytometry were utilized to analyze the impacts of lncRNA AC012181.2 on gene and protein expression related to cancer metabolism. Additionally, a tumorigenic model in nude mice was used to observe the in vivo effects. RESULT Modulation of AC012181.2 in MSCs significantly affected the proliferation, migration, and invasion capabilities of BGC823 gastric cancer cells. Knockdown of AC012181.2 resulted in reduced tumor growth in mouse models, along with changes in key gene and protein expression levels associated with cancer metabolism. Overexpression of AC012181.2 showed the opposite effect, enhancing tumor growth and altering cellular behaviors and molecular expressions in favor of cancer progression. CONCLUSION The lncRNA AC012181.2 is crucial for gastric cancer metabolic reprogramming by regulating HERPUD1 Protein. Targeting it offers a promising avenue to impact the tumor microenvironment and develop novel gastric cancer therapies.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Fangying Yin
- Department of Pediatrics, The Third Norman Bethune Hospital of Jilin University, Xiantai Street, NO.126, Changchun 130033, China
| | - Xuming Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Chaohe Zhang
- Department of Tumor Hematology, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China.
| |
Collapse
|
2
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
3
|
Ömeroğlu E. The relationship between URG4 and clinicopathologic parameters and its effect on two-year survival in gastric carcinoma. Transl Oncol 2024; 50:102122. [PMID: 39326326 PMCID: PMC11460518 DOI: 10.1016/j.tranon.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. The present study examined the relationship between Upregulated gene 4 (URG4) expression, an oncogene involved in the development of gastric carcinoma, and clinicopathologic parameters including Human epidermal growth factor receptor 2 (HER2) status. The study aimed to investigate the importance of URG4 as a prognostic factor for 2-year survival in GCs, which are usually in the advanced stage at the time of diagnosis and have a rapid course. METHODS In 61 patients with GC, URG4 expression results in paraffin blocks were compared with the patients' clinicopathologic, 2-year survival, and HER2 results. RESULTS Among the patients, 24 (39 %) had low URG4 scores (scores 0-4) and 37 (61 %) had high URG4 scores (scores 6-9). While the HER2 score was negative in 52 (85 %)patients, it was positive in 9 (15 %). URG4 expression values were significantly correlated with tumor (T) stage and lymphovascular invasion (LVI) (p < 0.005), whereas no significant correlation was determined between other pathological prognostic factors and HER2 status (p > 0.005). During the two-year period, 32 (52 %) patients survived and 29 (48 %) died. The mean duration of survival was 75.20 ± 35.22 weeks. A significant correlation was determined between URG4 values and survival and mortality results (p < 0.05). CONCLUSION We revealed a correlation (p < 0.005) between increased URG4 scores with increased T stage and LVI. We demonstrated an association between increased URG4 expression and survival time and mortality in patients with GC during the first two years of survival (p < 0.005) and URG4 and HER2 yielded similar results as prognostic factors in the survival of the patients URG4 is an essential oncogene in malignancies, especially in gastric GC, requiring further research and development in prognostic and therapeutic areas.
Collapse
Affiliation(s)
- Ethem Ömeroğlu
- Clinic of Pathology, Konya City Hospital, University of Health Sciences, Konya, Turkey.
| |
Collapse
|
4
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
5
|
Pathoor NN, Ganesh PS. Unveiling the nexus: Long non-coding RNAs and the PI3K/Akt pathway in oral squamous cell carcinoma. Pathol Res Pract 2024; 262:155540. [PMID: 39142241 DOI: 10.1016/j.prp.2024.155540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The PI3K/Akt pathway plays a critical role in the progression and treatment of oral squamous cell carcinoma (OSCC). Recent research has uncovered the involvement of long non-coding RNAs (lncRNAs) in regulating this pathway, influencing OSCC cell proliferation, survival, and metastasis. This review explores the latest findings on how certain lncRNAs act as either cancer promoters or cancer inhibitors within the PI3K/Akt signaling pathway. Certain lncRNAs act as oncogenic or tumor-suppressive agents, making them potential diagnostic and prognostic markers. Targeting these lncRNAs may lead to novel therapeutic strategies. The evolving fields of precision medicine and artificial intelligence promise advancements in OSCC diagnosis and treatment, enabling more personalized and effective patient care.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
6
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
7
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
8
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2024. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
9
|
Han A, Liu T, Du P, Wang M, Liu J, Chen L. The FOXO1/G6PC axis promotes gastric cancer progression and mediates 5-fluorouracil resistance by targeting the PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2024; 63:688-700. [PMID: 38224261 DOI: 10.1002/mc.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Gastric cancer (GC) is a prevalent malignancy of the digestive system. Distant metastasis and chemotherapy resistance are the crucial obstacles to prognosis in GC. Recent research has discovered that the glucose-6-phosphatase catalytic subunit (G6PC) plays an important role in tumor malignant development. However, little evidence has highlighted its role in GC. Herein, through a comprehensive analysis including profiling of tissue samples and functional validation in vivo and in vitro, we identify G6PC as a crucial factor in GC tumorigenesis. Importantly, we found that the FOXO1/G6PC axis could accelerate GC cell proliferation, metastasis, and 5-Fluorouracil (5-FU) resistance by targeting the PI3K/AKT/mTOR signaling pathway, implicating that as a prospective therapeutic approach in GC.
Collapse
Affiliation(s)
- Anna Han
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Taorui Liu
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pan Du
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Mengying Wang
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Jiajing Liu
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Liyan Chen
- Key Laboratory Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Cancer Research Center, Yanbian University Medical College, Yanji, China
| |
Collapse
|
10
|
Dong N, Jiang B, Chang Y, Wang Y, Xue C. Integrated Omics Approach: Revealing the Mechanism of Auxenochlorella pyrenoidosa Protein Extract Replacing Fetal Bovine Serum for Fish Muscle Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6064-6076. [PMID: 38465450 DOI: 10.1021/acs.jafc.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.
Collapse
Affiliation(s)
- Nannan Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingxue Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yanchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
11
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Zhou X, Chang L, Liang Q, Zhao R, Xiao Y, Xu Z, Yu L. The m6A methyltransferase METTL3 drives thyroid cancer progression and lymph node metastasis by targeting LINC00894. Cancer Cell Int 2024; 24:47. [PMID: 38291427 PMCID: PMC10826051 DOI: 10.1186/s12935-024-03240-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are significant contributors to various human malignancies. The aberrant expression of lncRNA LINC00894 has been reported in various human malignancies. We aimed to illustrate the role of LINC00894 and its underlying mechanism in the development of papillary thyroid carcinoma (PTC). METHODS We performed bioinformatics analysis of differentially expressed RNAs from TCGA and GEO datasets and selected the target lncRNA LINC00894. SRAMP analysis revealed abundant M6A modification sites in LINC00894. Further analysis of StarBase, GEPIA, and TCGA datasets was performed to identify the related differentially expressed genes METTL3. Colony formation and CCK-8 assays confirmed the relationship between LINC00894, METTL3, and the proliferative capacity of PTC cells. The analysis of AnnoLnc2, Starbase datasets, and meRIP-PCR and qRT‒PCR experiments confirmed the influence of METTL3-mediated m6A modification on LINC00894. The study employed KEGG enrichment analysis as well as Western blotting to investigate the impact of LINC00894 on the expression of proteins related to the Hippo signalling pathway. RESULTS LINC00894 downregulation was detected in PTC tissues and cells and was even further downregulated in PTC with lymphatic metastasis. LINC00894 inhibits the lymphangiogenesis of vascular endothelial cells and the proliferation of cancer cells. METTL3 enhances PTC progression by upregulating LINC00894 by enhancing LINC00894 mRNA stability through the m6A-YTHDC2-dependent pathway. LINC00894 may inhibit PTC malignant phenotypes through the Hippo signalling pathway. CONCLUSION The METTL3-YTHDC2 axis stabilizes LINC00894 mRNA in an m6A-dependent manner and subsequently inhibits tumour malignancy through the Hippo signalling pathway.
Collapse
Affiliation(s)
- Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Lisha Chang
- Oncology department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing City, People's Republic of China
| | - Qiaoqiao Liang
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Rongjie Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yong Xiao
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Zheng Xu
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Leitao Yu
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.
| |
Collapse
|
13
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
14
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
15
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
16
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
17
|
Almalki WH. Beyond the genome: lncRNAs as regulators of the PI3K/AKT pathway in lung cancer. Pathol Res Pract 2023; 251:154852. [PMID: 37837857 DOI: 10.1016/j.prp.2023.154852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lung cancer is a prevalent and devastating disease, representing a significant global health burden. Despite advancements in therapeutic strategies, the molecular mechanisms underlying its pathogenesis remain incompletely understood. Lung cancer typically displays the deregulated activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which is vital for cell proliferation, survival, and metastasis. Emerging evidence suggests that long non-coding RNA (lncRNAs) can modulate the PI3K/AKT pathway, offering new insights into lung cancer biology and potential therapeutic opportunities. These lncRNA act as either oncogenes, promoting pathway activation, or tumour suppressors, attenuating pathway signalling. The dysregulation of lncRNA is associated with various cellular processes, including apoptosis, cell cycle control, epithelial-mesenchymal transition (EMT), and angiogenesis, ultimately influencing lung cancer growth and metastasis. The development of novel therapeutic strategies, such as small interfering RNAs (siRNAs), antisense oligonucleotides, and CRISPR/Cas9-mediated gene editing, holds promise for restoring lncRNAs dysregulation and re-establishing the equilibrium of the PI3K/AKT pathway. The emerging role of lncRNAs as regulators of the PI3K/AKT pathway sheds new light on the complex molecular landscape of lung cancer. Understanding the interplay between lncRNA and the PI3K/AKT pathway could lead to the identification of novel biomarkers for prognosis and therapeutic targets for precision medicine. The potential of lncRNAs-based therapeutics may pave the way for more effective and personalized treatment approaches in lung cancer and potentially other malignancies with dysregulated PI3K/AKT signalling. This review aims to explore the emerging role of lncRNAs as key regulators of the PI3K/AKT pathway in lung cancer.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
18
|
Reiter RJ, Sharma R, Tan DX, Huang G, de Almeida Chuffa LG, Anderson G. Melatonin modulates tumor metabolism and mitigates metastasis. Expert Rev Endocrinol Metab 2023; 18:321-336. [PMID: 37466337 DOI: 10.1080/17446651.2023.2237103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Melatonin, originally isolated from the mammalian pineal gland, was subsequently identified in many animal cell types and in plants. While melatonin was discovered to inhibit cancer more than 5 decades ago, its anti-cancer potential has not been fully exploited despite its lack of serious toxicity over a very wide dose range, high safety margin, and its efficacy. AREAS COVERED This review elucidates the potential mechanisms by which melatonin interferes with tumor growth and metastasis, including its ability to alter tumor cell metabolism, inhibit epithelial-mesenchymal transition, reverse cancer chemoresistance, function synergistically with conventional cancer-inhibiting drugs while limiting many of their side effects. In contrast to its function as a potent antioxidant in normal cells, it may induce oxidative stress in cancer cells, contributing to its oncostatic actions. EXPERT OPINION Considering the large amount of experimental data supporting melatonin's multiple and varied inhibitory effects on numerous cancer types, coupled with the virtual lack of toxicity of this molecule, it has not been thoroughly tested as an anti-cancer agent in clinical trials. There seems to be significant resistance to such investigations, possibly because melatonin is inexpensive and non-patentable, and as a result there would be limited financial gain for its use.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | | | | |
Collapse
|
19
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 205.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|