1
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
2
|
Gupta A, Dagar G, Rehmani MU, Prasad CP, Saini D, Singh M, Shankar A. CAR T-cell therapy in cancer: Integrating nursing perspectives for enhanced patient care. Asia Pac J Oncol Nurs 2024; 11:100579. [PMID: 39315365 PMCID: PMC11417177 DOI: 10.1016/j.apjon.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a significant advancement in cancer treatment, particularly for hematologic malignancies. Various cancer immunotherapy strategies are presently being explored, including cytokines, cancer vaccines, immune checkpoint inhibitors, immunomodulators monoclonal antibodies, etc. The therapy has shown impressive efficacy in treating conditions such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), and multiple myeloma, often leading to complete remission in refractory cases. However, the clinical application of CAR T-cell therapy is accompanied by challenges, notably severe side effects. Effective management of these adverse effects requires meticulous monitoring and prompt intervention, highlighting the critical role of nursing in this therapeutic process. Nurses play a crucial role in patient education, monitoring, symptom management, care coordination, and psychosocial support, ensuring safe and effective treatment. As research advances and new CAR T-cell therapies are developed, the role of nursing professionals remains pivotal in optimizing patient outcomes. The continued evolution of CAR T-cell therapy promises improved outcomes, with nursing professionals integral to its success.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Mohd Umar Rehmani
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Deepak Saini
- Indian Society of Clinical Oncology, Delhi, India
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
3
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
5
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
6
|
Khurshid A, Frishman WH, Aronow WS. Cardiac Complications of Multiple Myeloma Treatments. Cardiol Rev 2024:00045415-990000000-00327. [PMID: 39254524 DOI: 10.1097/crd.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Multiple myeloma (MM) arises in plasma cells, a type of white blood cell. The cancerous plasma cells produce monoclonal immunoglobulins in the bone marrow. The extent of proliferation in the malignant state can manifest in many complications including osteopenia, osteolytic lesions, pathologic fractures, hypercalcemia, anemia, and kidney dysfunction. As is the case with the treatment of other malignancies, the research relating to the management of MM is dynamic and evolving. In this review, we aim to succinctly summarize and categorize the major treatment options of MM, including both new treatments and also older treatments that are now less frequently utilized, with a specific focus on the cardiotoxicity of these agents.
Collapse
Affiliation(s)
| | | | - Wilbert S Aronow
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
7
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Shen J, Qian N, Xu G, Dou X, An Y, Yang C, Liu Y, Liu Y, Pan X, Wang J, Bai G, Chen H, Zhu X, Gao X, Zhou G, Xu Q. IMT030122, A novel engineered EpCAM/CD3/4-1BB tri-specific antibody, enhances T-cell recruitment and demonstrates anti-tumor activity in mouse models of colorectal cancer. Int Immunopharmacol 2024; 137:112424. [PMID: 38878486 DOI: 10.1016/j.intimp.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer is a major global health burden, with limited efficacy of traditional treatment modalities in improving survival rates. However, recently advances in immunotherapy has improved treatment outcomes for patients with this cancer. To address the continuing need for improved treatment efficacy, this study introduced a novel tri-specific antibody, IMT030122, that targets EpCAM, 4-1BB, and CD3. We evaluated the pharmacological efficacy and mechanism of action of IMT030122 in vitro and in vivo. In in vitro studies, IMT030122 exhibited differential binding to antigens and cells expressing EpCAM, 4-1BB, and CD3. Moreover, IMT030122 relied on EpCAM-targeted activation of intracellular CD3 and 4-1BB signaling and mediated T cell cytotoxicity specific to HCT116 colorectal cancer cells. In vivo, IMT030122 demonstrated potent anti-tumor activity, significantly inhibiting the growth of colon cancer HCT116 and MC38-hEpCAM subcutaneous grafts. Further pharmacological analysis revealed that IMT030122 recruited lymphocytes from peripheral blood into colorectal cancer tissue and exerted durable anti-tumor activity, predominantly by promoting the activation, proliferation, and differentiation of CD8T cells. Notably, IMT030122 still exhibited anti-tumor efficacy even in the presence of significantly depleted lymphocytes in colorectal cancer tissue. The potent pharmacological activity and anti-tumor effects of IMT030122 suggest it may enhance treatment efficacy and substantially extend the survival of patients with colorectal cancer in the future.
Collapse
Affiliation(s)
- Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Ying An
- Department of Preventive Treatment of Disease, Chengde Traditional Medicine Hospital, Hebei 067000, China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yunhui Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China.
| |
Collapse
|
9
|
Ohno R, Nakamura A. Advancing autoimmune Rheumatic disease treatment: CAR-T Cell Therapies - Evidence, Safety, and future directions. Semin Arthritis Rheum 2024; 67:152479. [PMID: 38810569 DOI: 10.1016/j.semarthrit.2024.152479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Despite advancements in managing autoimmune rheumatic diseases (ARDs) with existing treatments, many patients still encounter challenges such as inadequate responses, difficulty in maintaining remission, and side effects. Chimeric Antigen Receptor (CAR) T-cell therapy, originally developed for cancer, has now emerged as a promising option for cases of refractory ARDs. METHODS A search of the literature was conducted to compose a narrative review exploring the current evidence, potential safety, limitations, potential modifications, and future directions of CAR-T cells in ARDs. RESULTS CAR-T cell therapy has been administered to patients with refractory ARDs, including systemic lupus erythematosus, antisynthetase syndrome, and systemic sclerosis, demonstrating significant improvement. Notable responses include enhanced clinical symptoms, reduced serum autoantibody titers, and sustained remissions in disease activity. Preclinical and in vitro studies using both animal and human samples also support the efficacy and elaborate on potential mechanisms of CAR-T cells against antineutrophil cytoplasmic antibody-associated vasculitis and rheumatoid arthritis. While cautious monitoring of adverse events, such as cytokine release syndrome, is crucial, the therapy appears to be highly tolerable. Nevertheless, challenges persist, including cost, durability due to potential CAR-T cell exhaustion, and manufacturing complexities, urging the development of innovative solutions to further enhance CAR-T cell therapy accessibility in ARDs. CONCLUSIONS CAR-T cell therapy for refractory ARDs has demonstrated high effectiveness. While no significant warning signs are currently reported, achieving a balance between therapeutic efficacy and safety is vital in adapting CAR-T cell therapy for ARDs. Moreover, there is significant potential for technological advancements to enhance the delivery of this treatment to patients, thereby ensuring safer and more effective disease control for patients.
Collapse
Affiliation(s)
- Ryunosuke Ohno
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Okayama University, Okayama, Japan
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Rheumatology Clinic, Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
10
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
11
|
Zhang W, Wei W, Ma L, Du H, Jin A, Luo J, Li X. Mapping the landscape: a bibliometric study of global chimeric antigen receptor T cell immunotherapy research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03258-6. [PMID: 38953967 DOI: 10.1007/s00210-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The rise of immunotherapy provided new approaches to cancer treatment. We aimed to describe the contribution of chimeric antigen receptor T cell immunotherapy to future prospects. We analyzed 8035 articles from the Web of Science Core Collection with CiteSpace that covered with various aspects with countries, institutions, authors, co-cited authors, journals, keywords, and references. The USA was the most prolific country, with the University of Pennsylvania being the most published institution. Among individual authors, June Carl H published the most articles, while Maude SL was the most frequently co-cited author. "Blood" emerged as the most cited journal. Keyword clustering revealed six core themes: "Expression," "Chimeric Antigen Receptor," "Tumor Microenvironment," "Blinatumomab," "Multiple Myeloma," and "Cytokine Release Syndrome." In the process of researching the timeline chart of keywords and references, "Large B-cell lymphoma" was located on the right side of the timeline. In the keyword prominence analysis, we found that the keywords "biomarkers," "pd-1," "antibody drug conjugate," "BCMA," and "chimeric antigen" had high explosive intensity in the recent past. We found that in terms of related diseases, "large B-cell lymphoma" and "cytokine release syndrome" are still difficult problems in the future. In the study of therapeutic methods, "BCMA," "PD-1," "chimeric antigen," and "antibody drug conjugate" deserve more attention from researchers in the future.
Collapse
Affiliation(s)
- Wenhao Zhang
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenzhuo Wei
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - He Du
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Anran Jin
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Jinyi Luo
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Xiaoming Li
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Yella PR, Jagani PP, Patel V, Jagani RP, Ramesh V, Skaria PE, Chandra A. An Unusual Presentation of Diffuse Large B-Cell Lymphoma With Penile Metastasis. Cureus 2024; 16:e65222. [PMID: 39184761 PMCID: PMC11343727 DOI: 10.7759/cureus.65222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a high-grade B-cell lymphoma that most commonly presents with lymph node involvement. Extranodal manifestations are seen in around 40% of the cases involving the gastrointestinal tract, thyroid, testes, brain, and breast, among many others. However, penile metastasis is extremely rare and often overlooked in routine clinical evaluations. We present the unique case of a 79-year-old man with a history of DLBCL with extranodal involvement who achieved remission after completing five cycles of chemotherapy and presented eight months later with a new penile mass. A PET-CT scan of the skull to mid-thigh revealed bilateral pulmonary nodules, multiple lesions in the pancreas, retroperitoneal nodules, and an increased uptake at the base of the penis, leading to a biopsy of the penile mass that confirmed recurrent DLBCL with penile metastasis. The patient subsequently underwent surgical excision of the lesion and additional chemotherapy. This case underscores the importance of considering atypical sites of involvement in DLBCL patients and emphasizes the need for a timely diagnostic workup to ensure early detection and accurate diagnosis. By raising awareness of this rare manifestation and promoting comprehensive evaluations, we can potentially improve patient outcomes and facilitate the development of more effective treatment strategies.
Collapse
Affiliation(s)
| | - Prachi P Jagani
- Pre-Medical Sciences, Richmond Gabriel University, Kingstown, VCT
| | - Vishva Patel
- Medical Sciences, Gujarat Medical Education and Research Society (GMERS) Medical College, Ahmedabad, IND
| | - Ravi P Jagani
- Family Medicine, Yuma Regional Medical Center, Yuma, USA
| | | | | | | |
Collapse
|
13
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
14
|
Qureshi Z, Altaf F, Jamil A, Siddique R. Optimization Strategies in CAR T-cell Therapy: A Comprehensive Evaluation of Cytopenia, HLH/MAS, and Other Adverse Events. Am J Clin Oncol 2024:00000421-990000000-00204. [PMID: 38907604 DOI: 10.1097/coc.0000000000001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative treatment for various hematological malignancies. Still, its remarkable efficacy is accompanied by unique adverse events that must be carefully managed. This comprehensive literature review evaluates the safety profile of CAR T-cell therapy, focusing on cytopenia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS), and other potential complications. Cytopenia, characterized by reduced blood cell counts, affects a significant proportion of patients, with rates of anemia, neutropenia, and thrombocytopenia reaching up to 60%, 70%, and 80%, respectively. Risk factors include high tumor burden, prior chemotherapy, and bone marrow involvement. Cytokine release syndrome (CRS) occurs in 13% to 77% of patients and is linked to the cytokine storm induced by CAR T cells, target antigen expression, and preexisting immune dysregulation. Other notable adverse events discussed are cytokine release syndrome, neurotoxicity, and infections. Understanding the mechanisms, risk factors, and management strategies for these adverse events is crucial for optimizing patient outcomes and unlocking the full potential of this revolutionary therapy. The review highlights the need for continued research, interdisciplinary collaboration, and evidence-based approaches to enhance the safety and efficacy of CAR T-cell therapy.
Collapse
Affiliation(s)
- Zaheer Qureshi
- Department of Medicine, The Frank H. Netter MD School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | | |
Collapse
|
15
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Strongyli E, Evangelidis P, Sakellari I, Gavriilaki M, Gavriilaki E. Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb. Pharmaceuticals (Basel) 2024; 17:591. [PMID: 38794161 PMCID: PMC11123727 DOI: 10.3390/ph17050591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can have a broad range of clinical manifestations, while various scoring systems have been developed for its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention, difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim to present the diagnostic methods and tests that have been used for the recognition of cognitive impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients.
Collapse
Affiliation(s)
- Evlampia Strongyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Maria Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
17
|
van den Bent M, Saratsis AM, Geurts M, Franceschi E. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions. Neuro Oncol 2024; 26:S110-S124. [PMID: 38102230 PMCID: PMC11066941 DOI: 10.1093/neuonc/noad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 12/17/2023] Open
Abstract
H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amanda M Saratsis
- Department of Neurosurgery, Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Enrico Franceschi
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
19
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
20
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
21
|
Strzelec A, Helbig G. Are we ready for personalized CAR-T therapy? Eur J Haematol 2024; 112:174-183. [PMID: 37431655 DOI: 10.1111/ejh.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The future of chimeric antigen receptor T (CAR-T) therapy remains unclear. New studies are constantly being published confirming the efficacy and favorable safety profile of its innovative enhancements. Currently approved CAR-T drugs are manufactured exclusively for a specific patient from the recipient's own cells. This does not close the door to further modifications with subsequent personalization and better adaptation to the individual needs. Bringing such a drug to market would involve raising the already high costs, so it is necessary to lower the existing ones. On the other hand, so-called universal CAR-T are also getting closer to the patient's bed, but its implementation may struggle with multiple challenges, including development of graft-versus-host disease (GvHD) and alloimmunity. However, that off-the-shelf therapy could prove useful as a quick solution for patients in very poor condition or excluded from current therapy due to manufacturing limitations. The introduction of currently tested solutions may undoubtedly change the current paradigm of treatment.
Collapse
Affiliation(s)
- Anna Strzelec
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Bustamante-Ogando JC, Hernández-López A, Galván-Díaz C, Rivera-Luna R, Fuentes-Bustos HE, Meneses-Acosta A, Olaya-Vargas A. Childhood leukemias in Mexico: towards implementing CAR-T cell therapy programs. Front Oncol 2024; 13:1304805. [PMID: 38304036 PMCID: PMC10833104 DOI: 10.3389/fonc.2023.1304805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Leukemias are the most common type of pediatric cancer around the world. Prognosis has improved during the last decades, and many patients are cured with conventional treatment as chemotherapy; however, many patients still present with a refractory disease requiring additional treatments, including hematopoietic stem cell transplantation. Immunotherapy with monoclonal antibodies or cellular therapy is a promising strategy for treating refractory or relapsed hematological malignancies. Particularly, CAR-T cells have shown clinical efficacy in clinical trials, and different products are now commercially approved by regulatory agencies in the USA and Europe. Many challenges still need to be solved to improve and optimize the potential of these therapies worldwide. Global access to cell therapy is a significant concern, and different strategies are being explored in the middle- and low-income countries. In Mexico, leukemias represent around 50% of total cancer diagnosed in pediatric patients, and the rate of relapsed or refractory disease is higher than reported in other countries, a multi-factorial problem. Although significant progress has been made during the last decades in leukemia diagnosis and treatment, making new therapies available to Mexican patients is a priority, and cell and gene therapies are on the horizon. Efforts are ongoing to make CAR-T cell therapy accessible for patients in Mexico. This article summarizes a general landscape of childhood leukemias in Mexico, and we give a perspective about the current strategies, advances, and challenges ahead to make gene and cell therapies for leukemia clinically available.
Collapse
Affiliation(s)
- Juan Carlos Bustamante-Ogando
- Immunodeficiencies Research Laboratory and Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Alejandrina Hernández-López
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCYT, Mexico City, Mexico
| | - César Galván-Díaz
- Oncology Department, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Hugo E. Fuentes-Bustos
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Angélica Meneses-Acosta
- Laboratorio 7 Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Alberto Olaya-Vargas
- Hematopoietic Stem Cell Transplantation and Cell Therapy Program, Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
23
|
Mutsaers SE, Miles T, Prêle CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther 2023; 252:108562. [PMID: 37952904 DOI: 10.1016/j.pharmthera.2023.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia.
| | - Tylah Miles
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; School of Medical, Molecular and Forensic Sciences, Murdoch University, WA, Australia
| | - Gerard F Hoyne
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; The School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
24
|
Mouhssine S, Maher N, Gaidano G. A STEP ahead for CAR-T cell therapy of large B cell lymphoma: understanding the molecular determinants of resistance. Transl Cancer Res 2023; 12:2970-2975. [PMID: 38130313 PMCID: PMC10731332 DOI: 10.21037/tcr-23-1396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
25
|
Kumar R, Kapoor R, Sharma S, Pramanik SK, Yanamandra U, Mishra K, Khera S, Sharma A, Das S, Verma T, Singh J, Nair V. Bone marrow transplant: A two-decade single centre hematology experience. Med J Armed Forces India 2023; 79:657-664. [PMID: 37981920 PMCID: PMC10654354 DOI: 10.1016/j.mjafi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 11/21/2023] Open
Abstract
Background Bone Marrow Transplant (BMT) is a curative form of therapy for many hematological disorders in both the adult and pediatric patients. The availability of BMT in the AFMS at AHRR for the last 02 decades has been a game changer for the patients. Methods We reviewed our BMT data since the inception of the program till Feb 2023. Results Over 700 patients with more than 23 different types of hematological disorders have undergone this procedure 58%% patients underwent an Autologous BMT and 42% an allogenic BMT. Autologous BMT for Multiple Myeloma and Allogenic BMT for Aplastic Anemia and Acute Leukemias have been the most common indications. 73% patients were adults, and 27% patients were of the pediatric age group. The male: female ratio was 2:1. The spectrum of allogenic Hematopoietic Stem Cell Transplant (HSCT) has expanded from Matched Sibling Donor (MSD) transplants to Matched Unrelated Donor (MUD) Transplants and Haploidentical Donor Transplants. 93% of our Allogenic BMT patients underwent a MSD BMT, 1% MUD BMT and 06% Haploidentical BMT. Today no patient with a malignant hematological disorder requiring a BMT is denied the procedure due to the lack of an HLA donor due to the availability of haploidentical BMT. Conclusion The evolution of a BMT program has a long learning curve and the expanded pool of eligible donors has led to a situation of "transplant for all". Haploidentical HSCT for nonmalignant hematological disorders is an unmet need. CART cell therapy and Cellular therapies need to be prioritized for future inclusion.
Collapse
Affiliation(s)
- Rajiv Kumar
- Senior Advisor (Medicine) & Clinical Hematologist, Army Hospital (R&R), New Delhi, India
| | - Rajan Kapoor
- Consultant (Medicine) & Clinical Hematologist, Army Hospital (R&R), New Delhi, India
| | | | | | - Uday Yanamandra
- Professor (Medicine) & Clinical Hematologist, Armed Forces Medical College, Pune, India
| | - Kundan Mishra
- Senior Advisor (Medicine) & Clinical Hematologist, Command Hospital (CC), Lucknow, India
| | - Sanjeev Khera
- Classified Specialist (Pediatrics) & Pediatric Hematoncologist, Army Hospital (R&R), New Delhi, India
| | - Ajay Sharma
- Consultant (Medicine) & Clinical Hematologist, Paras Hospital, Panchkula, India
| | - S. Das
- Consultant (Medicine) & Clinical Hematologist, Jaypee Hospital, Noida, India
| | - Tarun Verma
- Consultant (Medicine) & Clinical Hematologist, Yashoda Hospital, Ghaziabad, India
| | - Jasjit Singh
- Consultant (Medicine) & Clinical Hematologist, Sir Ganga Ram Hospital, New Delhi, India
| | - Velu Nair
- Group Head Medical Services, Chief Consultant – Hemato -Oncology & Bone Marrow Transplant, Apollo-CBCC, Ahmedabad, India
| |
Collapse
|
26
|
Levantini E. Novel Therapeutic Targets in Cancers. Int J Mol Sci 2023; 24:14660. [PMID: 37834107 PMCID: PMC10572778 DOI: 10.3390/ijms241914660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer cells can arise in any organ of the body, and their cells of origin vary depending on the tissue type [...].
Collapse
Affiliation(s)
- Elena Levantini
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, 56124 Pisa, Italy
| |
Collapse
|
27
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Magrelli A. CAR-T State of the Art and Future Challenges, A Regulatory Perspective. Int J Mol Sci 2023; 24:11803. [PMID: 37511562 PMCID: PMC10380644 DOI: 10.3390/ijms241411803] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This review is an outlook on CAR-T development up to the beginning of 2023, with a special focus on the European landscape and its regulatory field, highlighting the main features and limitations affecting this innovative therapy in cancer treatment. We analysed the current state of the art in the EU and set out a showcase of the field's potential advancements in the coming years. For this analysis, the data used came from the available scientific literature as well as from the European Medicines Agency and from clinical trial databases. The latter were investigated to query the studies on CAR-Ts that are active and/or relevant to the review process. As of this writing, CAR-Ts have started to move past the "ceiling" of third-line treatment with positive results in comparison trials with the Standard of Care (SoC). One such example is the trial Zuma-7 (NCT03391466), which resulted in approval of CAR-T products (Yescarta™) for second-line treatment, a crucial achievement for the field which can increase the use of this type of therapy. Despite exciting results in clinical trials, limitations are still many: they regard access, production, duration of response, resistance, safety, overall efficacy, and cost mitigation strategies. Nonetheless, CAR-T constructs are becoming more diverse, and the technology is starting to produce some remarkable results in treating diseases other than cancer.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology "V. Erspamer", Sapienza Università di Roma, 00185 Rome, Italy
| | - Alessandra Ambrosone
- Faculty of Medicine and Pharmacy, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|